John Lord.

Beacon Lights of History, Volume 14 The New Era; A Supplementary Volume, by Recent Writers, as Set Forth in the Preface and Table of Contents online

. (page 12 of 26)
Online LibraryJohn LordBeacon Lights of History, Volume 14 The New Era; A Supplementary Volume, by Recent Writers, as Set Forth in the Preface and Table of Contents → online text (page 12 of 26)
Font size
QR-code for this ebook


propeller on the canals and inland waters of the United States. I had at
the same time strong reasons for supposing that Stockton would be able
to start the 'big frigate' for which I had prepared such laborious plans
in England." The event was otherwise determined, however, and during the
remaining fifty years of his life he lived and wrought in the New World,
and as a citizen of his adopted country.

If the record of his twelve years of work in London was long, that for
the remaining and maturer years of his life may well be imagined as
vastly greater. During the earlier part of this period, or until the
Civil War, when all his energies were concentrated upon his work in
connection with the "Monitor" type of warship, we find the same wealth
of invention and human energy, but for the most part directed along
lines related to marine and naval construction. It was a period of
training for the fuller fruitage of his genius during the Civil War.

Shortly after his arrival, or in 1840, a prize was offered by the
Mechanics' Institute of New York for the best plan of a steam
fire-engine. With his previous experience in London, Ericsson easily
carried off the palm and was awarded the prize. He further occupied
himself with the introduction of propellers on boats engaged in the
inland navigation of the United States, with the design and construction
of the United States steam frigate "Princeton," with the development of
the compound principle in the steam-engine, then in 1851 with his
hot-air ship "Ericsson," or ship propelled by hot-air or caloric
engines, as they were then termed, and later with caloric engines in
smaller sizes for stationary purposes, of which several thousand were
sold during the next succeeding years.

In the work of introducing his propellers good progress was made,
especially in boats built for use on the Great Lakes, so that by 1844,
when the U.S.S. "Princeton" went into commission, there were in use some
twenty-five vessels with the screw-propeller as a means of propulsion.

The project of building a vessel for the American Navy, the purpose
which had most strongly attracted Ericsson to the United States,
suffered long delay in connection with the arrangements between Captain
Stockton and the naval authorities at Washington. At length, in 1841,
Captain Stockton was authorized to proceed with the construction of a
screw steam frigate of about one thousand tons. This was the U.S.S.
"Princeton," which marks an epoch as the first screw vessel-of-war. She
was followed by the French "Pomone" in 1843, and the English "Amphion"
in 1844, for the equipment of which Ericsson's agent in England, Count
Von Rosen, received commissions from the French and English governments
respectively.

The "Princeton" was completed in due time and was equipped with two
12-inch wrought-iron guns, one brought by Ericsson from England and one
designed and built under the direction of Captain Stockton. At the
trials of the ship in 1844 the latter gun exploded, killing the
Secretaries of State and of the Navy, besides other prominent visitors
on board, and wounding several others. This terrible disaster threw an
entirely undeserved stigma upon the ship herself and upon Ericsson's
work, and it was not until many years after that his name was entirely
free from some kind of reproach in connection with the "Princeton" and
the deplorable results of the accident on board.

These are some of the principal lines of work with which Ericsson
occupied himself during the twenty-two years between 1839 and 1861. At
the latter date came the supreme opportunity of his life, and his
services in the art of naval construction during the remainder of the
Civil War, which was then in progress, are a part of the history of that
great struggle. Here, as with the propeller, volumes might be written in
the attempt to give a full account of the inception, growth, and final
vindication of Ericsson's ideas regarding naval offence and defence, as
expressed by the means available in the engineering practice of the day.
The leading points only can be summarized.

The question of armored ships was in the air. The advantages of armor
had been already demonstrated on the French ship "Gloire" and others in
connection with the naval part of the Crimean War, and there was a
feeling that ironclads of some kind were a necessity of the situation.
These facts were perhaps more clearly realized at the South than at the
North; and early in 1861 we find Mr. Stephen R. Mallory, the Confederate
Secretary of the Navy, taking active steps to raise the "Merrimac,"
which had been sunken at the Norfolk Navy Yard, and convert her into an
armor-clad. Information regarding this project naturally became known to
the Federal authorities, and occasioned President Lincoln and the entire
Cabinet the most serious anxiety. At length on August 3, 1861, the
appointment of a Board was authorized, the duty of which it should be to
examine into the question fully, obtain plans, and recommend the
construction of such armor-clads as they should judge best suited to the
demands of the situation.

Shortly after this, Ericsson forwarded to President Lincoln a
communication in which he offered to construct a vessel "for the
destruction of the Rebel fleet at Norfolk and for scouring the Southern
rivers and inlets of all craft protected by Rebel batteries." For one
reason or another this communication does not seem to have produced any
immediate result. Later, however, when the Board made its report dated
September 16, they registered the opinion that the present demand called
for "vessels invulnerable to shot, of light draft of water, before going
into a more perfect system of large iron-clad seagoing vessels of war."
In pursuance of this idea they recommended the construction of three
vessels, - Ericsson's floating battery, a broadside vessel later known as
the "Ironsides," and the "Galena." Mr. C.S. Bushnell, who was
instrumental in bringing Ericsson's plans actually before the Board,
later associated with himself and Ericsson in the project two gentlemen
of means, and large manufacturers of iron plate, Mr. John A. Griswold
and Mr. John F. Winslow, who advanced most of the money needed, Mr.
Bushnell supplying the remainder. The keel was laid Oct. 25, 1861, and
the "Monitor," as she was named by Ericsson, was launched Jan. 30, 1862,
and was turned over to the Government Feb. 19, 1862. This brief record
of construction leaves untold all history of the ceaseless struggle
against time and of the superb organization and distribution of the work
which made possible the completion of such a piece of work in the period
of one hundred working days.

One important fact which goes far to explain this astonishing speed in
design and construction is found in the fact that Ericsson was not
dealing with an entirely new and freshly developed proposition. He has
stated that the thought of a floating battery, which should be small in
size, but impregnable to the heaviest guns known and yet heavily armed
herself, had long occupied his thoughts in connection with the problem
of the defence of Sweden. Ericsson never forgot his native land, and
gave to her political troubles and to the question of her defence
against her more powerful neighbors much serious thought. As a result of
this study, he had produced as early as 1854 a design embodying all the
essential features of the "Monitor," and this design, shown by a model,
was in that year sent to Napoleon III., who was then at war with Russia.
This was in the hope that he might in this way contribute to the
overthrow of the latter, the hereditary enemy of his native land.

The design, however, was not adopted, and after it was returned was laid
aside to collect the dust of his office, until the experiences of the
Civil War brought it again to the light. The plan in all its main
features had therefore long been matured, and it only remained to
proceed rapidly with the details and with the realization of the idea in
the most suitable materials to be obtained.

The result of the battle between the "Monitor" and the "Merrimac" in
Hampton Roads is a part of history. The relentless devastation which the
latter had begun on the old wooden ships of the American Navy at Hampton
Roads was stayed, and the wild fears at the North concerning the
destruction which she might cause to the shipping and to the seaboard
cities was calmed. The "Merrimac" met her master, and retired from the
conflict crippled and shorn of power for further evil. A short time
later she sank beneath the waters of the Chesapeake, and is now
remembered only as the antagonist of the "Monitor."

If the result of this battle between the "Monitor" and the "Merrimac"
marked a turning-point in the naval aspect of the Civil War, it wrought
a no less marked change in the standing and fortunes of her designer.
Some of his engineering efforts had not met with the success for which
he or his friends had hoped. The engines of the air-ship, while a
success as a piece of mechanism, were so enormous and heavy that she had
to be considered as a commercial failure, and the venture was not
repeated; the deplorable accident on the "Princeton" was by some held to
be in part chargeable to Ericsson, though a later and full knowledge of
the circumstances shows that such was in no wise the case. Again,
Ericsson, as an experimenter and pioneer, was by some considered as a
dreamer, and before the "Monitor" was completed there was no lack of
croakers who prophesied failure or who openly ridiculed the idea. This
condition was of course natural. In many ways Ericsson was ahead of his
age; and, again, it must not be supposed that he avoided mistakes or
that all of his work fully realized the expectations which were based
upon it. Furthermore, Ericsson's spirit was proud, and he was little
disposed to accept criticism from those whom he felt to be unqualified
to pass adequate judgment on his work, while he was especially impatient
under the system by which government work was done. He was therefore but
little disposed to pleasantly submit to the exasperating delays and
interferences with his work which arose from the methods of doing
public business, and it is no more than the simple truth to say that
during the preceding years the relations between Ericsson and the
officials of the Navy Department had often become seriously strained,
and they were seldom in cordial accord regarding the various questions
which arose in connection with his public work.

With the demonstration made by the "Monitor," however, the attitude of
the public changed in a moment, and Ericsson was hailed on every hand as
a public benefactor. He received the thanks of Congress on March 28,
1862, and of the Legislature of the State of New York a little later.
Besides these, he was the recipient of numbers of memorials and
mementoes, and of such praise in every form as might well have disturbed
the equilibrium of a mind less well balanced. In all this change of
public opinion, the one thing which must have given him the deepest
satisfaction was the change in the attitude of the naval authorities at
Washington. He was now considered as one whose ideas had demonstrated
their right to serious and respectful attention, and a large fleet of
vessels of the monitor type was ordered, similar to but larger than the
prototype, and containing such minor changes as experience had
suggested. Yet even this was not accomplished without objection. The
officers of the navy were accustomed to the old type of wooden ship,
and were slow to realize that naval war was, after all, an engineering
problem, and that the ideas of the engineer must now be substituted for
those which had been sanctified by long ages of past experience. Still,
the demonstration was too convincing to admit of serious question, and
Ericsson and his associates in business were busily occupied during the
remainder of the war in the design and construction of a numerous fleet
of vessels of the monitor type.

Ericsson's work during this period was enormous. One design followed
another in quick succession, while work of supervision and inspection
and cares of a business nature all combined to make a burden which would
have broken down a nature less determined and self-centred, and a body
less inured to physical endurance and sustained nervous tension.

This prodigious load was not so much but that he found time to devote to
the needs of other nations, and in 1862 he offered to construct for the
Chilian government a monitor similar to those under construction for the
United States, while later a similar offer was made to the Peruvian
Government. With the close of the Civil War Ericsson found still further
time to devote to the introduction of this type of vessel into foreign
navies, and a considerable part of his time seems to have been occupied
with projects of this character, and more particularly with the question
of the naval defence of his native land. As regards the introduction of
warships of the monitor type, the results were not so pronounced as
might have been expected, and while the influence of the idea is seen in
the practice of every maritime nation in regard to the construction of
its warships, still, for the most part, the leading nations preferred to
make application of the idea in their own way rather than order such
vessels direct from their original designer. Yet in not a few cases the
original type was faithfully copied, though it is not always clear to
what extent Ericsson himself may have had direct contact with their
designs. In 1866 the Swedes were able to test the first of a small fleet
of monitors built after Ericsson's plans. This was called the "John
Ericsson," and was armed with two 15-inch guns presented to Sweden by
Ericsson himself. Later, in 1868, he designed for Spain and
superintended the construction of thirty small gunboats for use in
Cuban waters.

For nearly ten years now Ericsson had devoted most of his energies to
the art of war. It was a time of change and unrest. Heavy guns and armor
had brought about a complete break with the past. The torpedo, which had
made its appearance in crude form during the Civil War, was attracting
more and more attention, and questions of naval offence and defence and
of the best governmental policy were attracting the serious attention of
all whose duty led them into relation with such matters. Into this
problem in its broadest aspects Ericsson threw himself in the early
'seventies with all the ardor of his younger days.

It is proper to explain here that there was one feature of the earlier
plans which were submitted to Napoleon III. in 1854, which he did not
embody in the "Monitor," and which, indeed, was omitted from all
published plans and descriptions of the system given out in former
years. This was a system of submarine or subaqueous attack, which, he
states in a letter to John Bourne, had attracted his attention since
1826. The time now seemed ripe for the presentation and development of
this idea, and he accordingly developed his designs for a torpedo, and
for a method of firing it under water from a gun carried in the bow of a
boat, and suitably opening to allow the discharge of the torpedo
projectile. This was Ericsson's so-called "Destroyer" system, and was
embodied finally in a boat called the "Destroyer," which he built in
company with his friend, Mr. C.H. Delamater, and with which he carried
on numerous experiments. In the end, however, the system did not commend
itself to the naval authorities, and the "Destroyer" was left on her
designer's hands, an instance of difference of opinion between Ericsson
and those charged with the duty of naval administration, and with no
supreme test of war to provide opportunity for the determination as to
which were the more correct in their judgment. With the "Destroyer,"
and his work in connection with her, closes the record of Ericsson's
connection with the advance in naval construction.

During these later years of his life it must not be supposed that he was
less busily occupied than in earlier life. His was a nature which knew
no rest, and to the last day of his life he was literally in the
harness. Only brief mention however can be made of some of the more
important lines of work which interested the closing years of
Ericsson's life.

In connection with his naval designs, he devoted much study to the
improvement of heavy ordnance, both as to the gun and its mounting. In
particular, his mounting of the guns in the "Monitor" was quite
original, and the friction arrangement for absorbing the recoil was a
great improvement over methods then in use, and served as a model for
many copies and adaptations of the same principles in later years by
other designers. In 1863 he also designed and built for the acceptance
of the Government a forged 13-inch wrought-iron gun. While his design
was an advance on those of the day, the demands on the makers of iron
forgings were more than could be successfully met, and the gun developed
some slight cracks in the test, which prevented further developments on
this line. Ericsson always maintained that the tests to which this gun
was submitted were unfairly severe, and he showed how the defects could
be remedied by a steel lining. But the Naval Bureau of Ordnance insisted
that this should be done at his own expense, and as he had already lost
some $20,000 on the gun, he was unwilling to proceed farther, and the
matter was allowed to lapse.

Throughout his entire career the improvement of the steam-engine
occupied a large share of Ericsson's attention, and in particular was
this the case in connection with his naval designs. From the
"Princeton," in 1841, to the "Destroyer," in 1878, there succeeded one
long series of types and forms of steam-engine, each in his opinion the
best adapted to the circumstances of the case. Naturally, opinions
differ, and he was brought into competition with other able engineers,
and his designs were often called into question or subjected to
criticism. In 1863, in competition with Chief Engineer Isherwood of the
navy, engines were designed for twin ships, the "Madawaska," afterward
known as the "Tennessee," and the "Wampanoag," afterward called the
"Florida." This was a battle royal of types and modes of application of
the power of the steam-engine to the propulsion of ships. The result was
a victory for Isherwood, although the "Madawaska," which was first
subjected to trial, made a speed higher than any warship at that time
afloat. This was exceeded by the "Wampanoag" a short time later; but
neither engine was of an enduring type, and after a time the machinery
of the "Madawaska" was removed, and she was repowered with a later type
of machinery, and long did service as the "Tennessee" in the list of
wooden frigates of the navy. The "Florida" was too expensive to maintain
in commission, and the special circumstances which had called her into
existence having passed by, she was laid up at New London, and never
again saw active service.

Keenly as Ericsson was interested in the steam-engine, it must be
admitted that he always showed a more profound interest in some form of
engine which should be able to displace it with a superior efficiency;
and hence his long series of efforts relating to the flame-engine, the
caloric engine, the gas-engine, and finally the solar engine, - with
either steam or heated air as the medium for carrying the heat. During
the last years of his life some of his most patient and careful study
was given to the perfection of a solar engine, or engine for utilizing
directly the heat of the sun instead of that of coal or other carbon
compounds. Besides this direct line of study and experimentation, he
gave during these years much thought to various scientific problems
connected with solar energy, the tides, gravitation, the nature of heat,
etc., etc. A plan for deriving power direct from the tides, improvements
in high-speed engines for electric-lighting purposes, further
improvements in his hot-air engine in small sizes for commercial
purposes, - these are some of the further lines of work which occupied
the attention of his closing years.

But the most cunningly devised of all mechanisms, the heart and brain,
must sooner or later tire and cease from their labors. The motive energy
becomes exhausted, and the mechanism must cease its work. So it was with
John Ericsson. In the first hour of the morning of March 8, 1889,
Ericsson died. This was within one day of the twenty-seventh anniversary
of the battle at Hampton Roads, the event with which the name of
Ericsson will always be associated, and which has given to it a
significance that will never be forgotten. His remains were first
interred in New York, and then, in 1890, in accordance with the request
of the Swedish Government, they were returned with impressive services
to his native land, where they now rest. In his death he received his
highest honors, for his remains were conveyed across the Atlantic by the
U.S.S. "Baltimore," one of the new ships of the navy specially detailed
for that service, and on both sides, in the United States and in Sweden,
the event was marked with every honor and ceremony which could indicate
the significance of his life and services for his adopted land and for
the world at large.

The two pieces of work which perhaps will be most permanently linked
with the name of Ericsson are the screw-propeller as a means of marine
propulsion, and the "Monitor" as a type of warship. In addition to
these, however, his life-work was rich in results which bore direct
relation to many other improvements in the broad field of marine
engineering and naval architecture. Of these a few of the more important
may be mentioned, such as the surface condenser, distiller, and
evaporator, forced draft for combustion, placing machinery of warships
below the water-line, and their protection by coal, ventilation by
fan-blowers, together with a vast variety of items involved in the
conception and design of the "Monitor" as a whole, and in his other
naval designs.

In order to appreciate the influence of Ericsson's life and work on the
field of marine construction, a brief glance may profitably be taken at
this branch of engineering work as it was before Ericsson's time, and as
it is now.

The material employed for shipbuilding was almost entirely wood. This
was displaced in the 'sixties and 'seventies by iron, which in turn was
displaced by steel, so that at the present time, except for special
reason, no material other than steel is thought of for this purpose.
With the gradual displacement of wood by iron in the mercantile marine,
Ericsson's relation was only indirect. Some of the earlier mercantile
vessels in which he was interested were of wood and some of iron. In the
field of warship construction, however, his influence through the
"Monitor" was more direct, especially as to the value of metal armor as
a protection against great gun-fire. Still, it is no more than justice
to say that with the change from wood to iron which took place during
the active part of his life, Ericsson had only an indirect relation, and
the change would doubtless have come about at the same time, and in much
the same general way as it did, independent of any influence which his
work may have had upon the question. Turning to the means of propulsion,
we find sails as the main, or almost only, reliance during the early
years of the century. The steam-engine operating paddle-wheels had come
to be recognized as a possibility, and under certain conditions as a
commercial success. The screw-propeller as a means of propulsion was
known only as a freak idea, and was without status or recognition as a
commercial or practical means for propelling ships. So far as the
screw-propeller was thought of as a means of propulsion, it lay under a
suspicion of loss of efficiency due to the oblique nature of its action,
and this was supposed to be such as to render it necessarily and
essentially less efficient than the paddle-wheel.

Ericsson lived to see the use of sails almost entirely discarded for war
purposes, and for mercantile purposes relegated to ships for special
service and of continually decreasing importance. He lived to see the
steam-engine take its place as the only means for supplying the power
required to propel warships, and attain a position of almost equal
relative importance in the mercantile marine. He lived to see the
paddle-wheel grow in importance and estimation as a means of propulsion
only in turn to be supplanted by the screw-propeller, which gradually


1 2 3 4 5 6 7 8 9 10 12 14 15 16 17 18 19 20 21 22 23 24 25 26

Online LibraryJohn LordBeacon Lights of History, Volume 14 The New Era; A Supplementary Volume, by Recent Writers, as Set Forth in the Preface and Table of Contents → online text (page 12 of 26)