John Lord.

Beacon Lights of History, Volume 14 The New Era; A Supplementary Volume, by Recent Writers, as Set Forth in the Preface and Table of Contents online

. (page 21 of 26)
Online LibraryJohn LordBeacon Lights of History, Volume 14 The New Era; A Supplementary Volume, by Recent Writers, as Set Forth in the Preface and Table of Contents → online text (page 21 of 26)
Font size
QR-code for this ebook

where Alexander made his most distant conquests, a multitude of English
scholars have been searching the ruins of old temples for the earliest
memorials of the worship of Buddha. Just now they have found his
birthplace and precious relics. But that takes us too far afield, and
would tempt us to further excursions in Burmah and China. We must come
back to Western Asia and the shores of Europe.

As has been indicated, the greatest puzzle of ancient history is that of
the Hittite empire, which seems to have ruled all Asia Minor at some
uncertain time, and to have extended over Syria and Palestine. No sooner
had the greatest Egyptian kings, Thothmes and Rameses, ventured their
armies into Asia, perhaps in vengeance on the incursions of Ionian
pirates, perhaps in requital of the tyrannies of the hated Shepherd
Kings, than they learned of the Hittites on the shores of the Euphrates.
Then, a century or two later, a mass of official correspondence sent by
the Kings of Palestine and Syria, dug up in Egypt, reports that the
Hittites had appeared as invaders from the north and beseeches military
aid. But the power of Egypt had waned, and the Hittites were supreme
until the Assyrians began and carried on for five centuries the
uncertain war which ended in the utter overthrow of the Hittites and all
their allies in a great battle at Carchemish. That great mound of
Carchemish needs to be thoroughly explored. Already an English
expedition has very carelessly just opened the hill and exposed, but not
fairly published, some few as fine friezes as are to be found in the
Assyrian capitals, with unread Hittite inscriptions, and a fine statue
of the Hittite Venus; but much remains to reward the student of Oriental
history and art. At Senjirli a German expedition under Von Luschan has
done more and better work, handsomely published, but this was a smaller
Syrian town, and less was to be expected; and yet here, and near by,
were found what was not expected, steles (upright slabs or pillars) with
the portraits of kings in high relief, covered over with long
inscriptions in Aramaic, the oldest and longest as yet discovered
anywhere in that language. It was a magnificent result of very moderate
labor, - Hittite friezes, Assyrian and Aramean inscriptions all in one
little mound. But for the most part we know the art and writing of the
Hittites from what we have found above ground, in their towns and
fortresses in the hills, for little digging has been done. At Pterium
was a principal sacred capital, and there, on a natural corridor of
rock, they carved a procession of gods and kings and soldiers that
excites the wonder of scholars. As I write, the announcement comes that
Professor Sayce has at last discovered the secret of the Hittite
hieroglyphs, and we may hope that very soon it will be possible to read
them. But there is vastly more of their records yet to be disinterred.

And there remain the two lands most sacred and beloved in poetry and
history, - the land of Israel and the land of Homer. It is amazing that
so little search has been made to find out what is hidden under the soil
of Palestine. Scholars in plenty have walked over the top of it, and
have told all that is on the surface, but almost nothing has been done
underground, no such excavations as in Egypt or Assyria. I do not forget
that the English Palestine Exploration Fund has followed out, with
trenches and tunnels, the walls of Jerusalem, nor that one or two old
mounds have been partly explored. But what is this to the great work
that needs to be done? There has been found on the surface the Moabite
Stone, at the old capital of Dibon, a wonderful record of early kings
mentioned in the Bible. And there is the short account in the rock-cut
conduit of Siloam, of the success of the workmen in the time of
Hezekiah, who, beginning at the two ends, did the fine engineering feat
of having their tunnels meet correctly in the solid rock. But when
Jerusalem is fully explored, and the northern capitals of Bethel and
Tirzah and Samaria, and a hundred other mounds that mark the site of
Jewish, Israelite, Philistine, and Amorite cities, we may expect
marvellous discoveries that will illumine our Holy Scriptures.

And one region yet remains to be considered, the scattered coasts and
islands that owned the Greek speech, and that created the Greek
civilization. It is not the Greece of the Parthenon and Pericles that we
wish to discover, for that we fairly know; but the arts and the history
of those earlier Greeks and Trojans that Homer tells of, the age of
Agamemnon and Ulysses, of Helen and Hector and Priam, and of the yet
earlier tribes that sailed the Aegean, and settled the Mediterranean
islands, and sent their ships to the Egyptian coasts, and sought golden
fleeces on the Euxine Sea. All about the coast of Asia Minor they lived,
while that Hittite power was ruling the interior; and, intermixed with
Phoenician trading-posts, they held the great islands of Crete and
Cyprus and the shores of Sicily and Italy. What shall we call them? Were
they Dorians, or Heraclidae, Achaeans or Pelasgi? Were they of the same
race as the mysterious Etruscans, or shall we name them simply
Mycenaeans, as we call the art Mycenaean that ruled the islands and
coasts down to the Homeric age, and we know not how many centuries
earlier, but certainly as far back as the conquering period of the
Eighteenth Egyptian Dynasty of Thothmes? Their soldiers and merchants
and their fine vases are pictured on the walls of Egypt, and their
pottery has long been studied; but we knew little of them until Dr.
Schliemann, the Greek merchant who achieved wealth in the United States,
bravely opened the great ruins of Troy, in the full patriotism of his
assurance that Homer's story of the Trojan war was history as well as
poetry. As he found one burnt and buried city under another, - for many
times was Troy destroyed, - and extended his investigations to Tiryns and
other ancient cities, one volume of splendid research followed another,
until the trader had compelled the unwilling scholar to confess that he
must dig for both history and art. To be sure, his interpretations were
quite too literal at first, but the whole world of classical scholarship
has learned from him the new method of research. Splendid have been the
results. If we are not sure which stratum represents the city of Priam,
we do learn how the people lived, and how fine was their work in silver
and gold, and how slight their knowledge of letters. Dr. Schliemann has
now a multitude of imitators. France and Germany and England and the
United States each maintain a school of archaeology in Athens, and each
conducts careful explorations. Our American School lost to the French,
for lack of money at the right time, the chance to explore Delphi, but
it has carried on careful explorations at Corinth and other places. How
wonderful was the discovery, not long ago, of a shipload of bronze and
marble statues wrecked while being transported as spoil of war from
Corinth to Rome!

But the most surprising discoveries in the realm of old Greek history
and art are those that have been made in these last two or three years
in Crete. Crete was a famous centre of ancient Greek legend. Jupiter was
born and reared on Mount Ida. From another mountain summit in Crete the
gods watched the battle on the plains of Troy. There ruled Minos, who
first gave laws to men, and who at his death was sent by the gods to
judge the shades as they entered the lower world. There was the famous
Labyrinth, and there the Minotaur devoured his annual tale of maidens
until he was slain by Theseus. Was there such a real palace of Minos as
the Greek poets sung? The magnificent palace of the Cretan kings at
Cnossus has been found, by Mr. Evans, with its friezes, its spiral
ornaments, its flounce-petticoated women, its treasuries, and its
tablets written in a script so old that it cannot yet be read, but which
will be read as surely as scholarship leaves none of its riddles
unsolved. The childhood of Greece, its mighty infancy, out of which it
grew to be the creator and the example of all the world's culture, is
even now being exposed to our view, safely kept to be recovered by the
scholars of our generation.

Of interest rather to the student of the curiosities of history are the
mounds and pyramids and temples built by the aborigines of America; for
these tribes have had absolutely no part in creating our dominant
civilization or developing its art. China and Japan are, at this late
day, giving something to the world's store of beauty and utility; but
the mound-builders and cliff-dwellers, the Mayas and Toltecs and Incas,
have given absolutely nothing which the world cared to accept. But this
does not argue that it is not worth while to learn what we can of the
rude civilization of the races whom we have displaced. Their arrowheads
and hatchets are in every little museum. Their mounds, sometimes shaped
like serpents or tortoises or lizards, are scattered over all the
central States, and many of them have been carefully explored with
scanty results. The cliff-dwellers have left somewhat richer remains,
more baskets and parched corn, yet nothing of artistic value. We have to
go to Mexico and Yucatan and further south to Peru, to find the
majestic capitals of the Mayas and Incas, who had really reached a fair
degree of such civilization as stone and copper, without iron, and the
beginnings of picture symbols, without letters, could provide. Humboldt
and Stephens, and Lord Kingsborough, and Squier, and Tchudi, and Charnay
have made explorations and found vast and wonderful cities, some of them
deserted and overgrown before Cortez and Pizarro took possession of the
lands for Spain and enslaved the people. Where the city of Mexico now
stands was a famous capital, from whose ruins were taken the great
Calendar stone and the double statue of the god of war and the god of
death. In Palenque and Uxmal, capitals of Yucatan, were immense palaces
and temples, with the weird ornamentation of Mayan imagination; and
equal wonders exist in the high uplands where the Incas ruled Peru. Even
their barbaric art and their unrecorded history must be recovered, to
satisfy the curiosity of the more fortunate races whose boasted
Christianity visited on them nothing better than cruel slaughter. At
least we can give them museums and publish magnificent pictures of
their ruins.

So we may bless the ashes and sand that seemed to destroy and bury the
monuments of the mighty empires of the ancient world, but which have
kindly covered and preserved them, just as we put our treasures away in
some safety-vault while absent on a long journey. The fire burned the
upper wooden walls of the city, and it fell in ruins, but under those
ruins, covered by that ashes, were preserved for two thousand, three
thousand, five thousand years uninjured, the choicest sculpture and the
most precious records of ancient nations, - retained beyond the reach of
vandal hands, until scholarship had grown wise enough to ask questions
of forgotten history, and had sent Layard and Schliemann and De Sarzec
and Evans and a hundred other men to dig with their competitive spades.
But in all the long list of enthusiasts not one deserves a higher honor
or has reaped a richer harvest than Sir Henry Layard.


Layard: "Early Adventures;" "Nineveh and its Remains;" "Nineveh and
Babylon;" "Monuments of Nineveh." Botta: "Monument de Ninive." Loftus:
"Chaldea and Susiana." Y. Place: "Ninive et Assyrie." Hilprecht:
"Babylonian Expedition of the University of Pennsylvania;" "Recent
Research in Bible Lands." Perrot and Chipiez: "History of Art in
Antiquity." J.P. Peters: "Nippur." R.W. Rogers: "History of Babylonia
and Assyria." F. Lenormant: "Students' Manual of the Ancient History of
the East;" "The Beginnings of History." Maspero: "Dawn of Civilization;"
"Struggle of the Nations;" "Passing of the Empires;" "Egyptian
Archaeology;" "Life in Ancient Egypt and Assyria." C.J. Ball: "Light
from the East." Egypt Exploration Fund's Publications. F.J. Bliss:
"Exploration in Jerusalem;" "A Mound of Many Cities." Schliemann: "Troy
and its Remains;" "Ilios;" "Mycenae;" "Tiryns;" "Troja." A.J. Evans:
"Cnossus;" "Cretan Pictographs." Tsountas and Manatt: "The
Mycenaean Age."





"No man is born into the world whose work
Is not born with him. There is always work,
And tools to work withal, for those who will."


A man was born into the world, on the 22d of September, 1791, whose work
was born with him, and who did this work so well that he became one of
its greatest benefactors. Indeed, much of the marvellous advance made in
the electric arts and sciences, during the last half-century, can be
directly traced to this work.

It was in Newington Butts, in London, England, that the man-child first
opened his eyes on the wonders of the physical world around him. To
those eyes, in after years, were given a far deeper insight into the
mysteries of nature than often falls to the lot of man. This man-child
was Michael Faraday, who has been justly styled, by those best capable
of judging him, "The Prince of Experimental Philosophers."

The precocity so common in the childhood of men of genius was
apparently absent in the case of young Faraday. The growing boy played
marbles, and worried through a scant education in reading, writing, and
arithmetic, unnoticed, and most probably, for the greater part, severely
left alone, as commonly falls to the lot of nearly all boys, whether
ordinary or extraordinary. At the early age of thirteen, he was taken
from school and placed on trial as errand-boy in the book-shop of George
Ribeau, in London. After a year at this work, he was taken as an
apprentice to the book-binding trade, by the same employer, who, on
account of his faithful services, remitted the customary premium. At
this work he spent some eight years of his life.

But far be it from us even to hint at the absence of genius in the young
child. Genius is not an acquired gift. It is born in the individual.
Apart from the marvellous achievements of the man, a mere glance at the
magnificent head, with its high intellectual forehead, the firm lips,
the intelligent inquiring eyes, and the bright face, as seen in existing
pictures, assures us that they portray an unusual individuality,
incompatible with even a suspicion of belonging to an ordinary man.
Doubtless the growing child did give early promise of his future
greatness. Doubtless he was a formidable member of that terrible class
of inquiring youngsters who demand the why and the wherefore of all
around them, and refuse to accept the unsatisfactory belief of their
fathers that things "are because they are." In its self-complacency, the
busy world is too apt to fail to notice unusual abilities in
children, - abilities that perhaps too often remain undeveloped from lack
of opportunities. But whether young Faraday did or did not, at an early
age, display any unusual promise of his life-work, all his biographers
appear to agree that he could not be regarded as a precocious child.

Faraday disclaimed the idea that his childhood was distinguished by any
precocity. "Do not suppose that I was a very deep thinker, or was marked
as a precocious person," says Faraday, when alluding to his early life.
"I was a very lively, imaginative person, and could believe in the
'Arabian Nights' as easily as the 'Encyclopaedia,' but facts were
important to me, and saved me. I could trust a fact and always
cross-examined an assertion. So when I questioned Mrs. Marcet's book [he
is alluding to her 'Conversations on Chemistry'], by such little
experiments as I could find means to perform, and found it true to the
facts as I could understand them, I felt that I had got hold of an
anchor in chemical knowledge, and clung fast to it."

But while there may be a question as to the existence of precocity in
the young lad, there does not appear to be any reason for believing that
his unusual abilities were the result of direct heredity. His father, an
ordinary journeyman blacksmith, never exhibited any special intellectual
ability, though possibly poverty and poor health may have been
responsible for this failure. His mother, too, it appears, was of but
ordinary mentality.

The environment of those early years - that is, from 1804 to 1813, while
in the book-binding business - was far from calculated to develop any
marked abilities inherent in our young philosopher. What would seem less
calculated to inspire a wish to obtain a deeper insight into the
mysteries of the physical world than the trade of book-binding,
especially in the case of a boy whose scholastic education ceased at
fourteen years and was limited to the mere rudiments of learning? But,
fortunately for the world, the inquiring spirit of the lad led him to
examine the inside of the books he bound, and thus, by familiarizing
himself with their contents, he received the inspiration that good
writing is always ready to bestow on those who properly read it. Two
books, he afterwards informs us, proved of especial benefit; namely,
"Marcet's Conversations on Chemistry," already referred to, and the
"Encyclopaedia Britannica." To the former he attributes his grounding in
chemistry, and to the latter his first ideas in electricity, in both of
which studies he excelled in after years. As we have seen, even at this
early age he followed the true plan for the physical investigator,
cross-questioned all statements, only admitting those to the dignity of
facts whose truth he had established by careful experimentation.

But our future experimental philosopher has not as yet fairly started on
the beginnings of his life-work. The possibilities of the book-binding
trade were too limited to permit much real progress. A circumstance
occurred in the spring of 1812 that shaped his entire after-life. This
was the opportunity then afforded him to attend four of the last
lectures delivered at the Royal Institution, by the great Sir Humphry
Davy. Faraday took copious notes of these lectures, carefully wrote them
out, and bound them in a small quarto volume. It was this volume, which
he afterwards sent to Davy, that resulted in his receiving, on March 1,
1813, the appointment of laboratory assistant in the Royal Institution.
His pay for this work was twenty-five shillings a week, with a lodging
on the top floor of the Institute, a very fair compensation for
the times.

Very congenial were the duties of the young assistant. They were to keep
clean the beloved apparatus of the lecturers, and to assist them in
their demonstrations. The new world thus opened was full of bright
promise. He keenly felt the deficiencies of his early education, and
did his best to extend his learning, so that he might be able to make
the most of his opportunities. But what he perhaps appreciated the most
was the inspiration he received from the great teacher Davy, who was
then Professor of Chemistry and Director of the Laboratory of the Royal
Institution; for Faraday assisted at Davy's lectures, and in an humble
way even aided his investigations, sharing the dangers arising from the
explosion of the unstable substance, chloride of nitrogen, that Davy was
then investigating. Faraday has repeatedly acknowledged the debt owed to
the inspiration of this teacher. Davy also, in later life generously
recognized, in his former assistant, a philosopher greater than himself.
As the renowned astronomer, Tycho Brahe, discovered in one of his
pupils, John Kepler, an astronomer greater than the master, and as
Bergman, the Swedish chemist, in a similar manner, discovered the
greater chemist Scheele, so when Davy, in after years, was asked what he
regarded as his greatest discovery, he briefly replied,
"Michael Faraday."

The task of the scientific historian, who endeavors honestly to record
the progress of research, and to trace the influence of the work of some
individual on the times in which he lived, is by no means an easy one;
for, in scientific work one discovery frequently passes so insensibly
into another that it is often difficult to know just where one stops
and the other begins, and much difficulty constantly arises as to whom
the credit should be given, when, as is too often the case, these
discoveries are made by different individuals. It is only when some
great discovery stands alone, like a giant mountain peak against the
clear sky, that it is comparatively easy to determine the extent and
character of its influence on other discoveries, and justly to give the
credit to whom the credit is due. Such discoveries form ready points of
reference in the intellectual horizon, and mark distinct eras in the
world's progress. This is true of all work in the domain of physical
science, but it is especially true in that of electricity and magnetism,
in which Faraday was pre-eminent. The scope of each of these sciences is
so extended, the number of workers so great, and the applications to the
practical arts so nearly innumerable, that it is often by no means an
easy task correctly to trace their proper growth and development.

Faraday's investigations covered vast fields in the domain of chemistry,
electricity, and magnetism. It is to the last two only that reference
will here be made. Faraday's life-work in electricity and magnetism
began practically in 1831, when he made his immortal discovery of the
direct production of electricity from magnetism. His best work in
electricity and magnetism was accomplished between 1831 and 1856,
extending, therefore, over a period of some twenty-five years, although
it is not denied that good work was done since 1856. Consequently, it
was at so comparatively recent a date that most of Faraday's work was
done that some of the world's distinguished electricians yet live who
began their studies during the latter years of Faraday's life. The
difficulties of tracing, at least to some extent, the influence that
Faraday's masterly investigations have had on the present condition of
the electrical arts and sciences will, therefore, be considerably

The extent of Faraday's researches and discoveries in magnetism and
electricity was so great that it will be impossible, in the necessarily
limited space of a brief biographical sketch, to notice any but the more
prominent. Nor will any attempt be made, except where the nature of the
research or discovery appears to render it advisable, to follow any
strict chronological order; for, our inquiry here is not so much
directed to a mere matter of history as to the influence which the
investigation or discovery exerted on the life and civilization of the
age in which we live.

There is a single discovery of Faraday that stands out sharply amidst
all his other discoveries, great as they were, and is so important in
its far-reaching results that it alone would have stamped him as a
philosophical investigator of the highest merits, had he never done
anything else. This was his discovery of the means for developing
electricity directly from magnetism. It was made on the 29th of August,
1831, and should be regarded as inspired by the great discovery made by
Oersted in 1820, of the relations existing between the voltaic pile and
electro-magnetism. It was in the same year that Ampere had conducted
that memorable investigation as to the mutual attractions and repulsions
between circuits through which electric currents are flowing, which
resulted in a theory of electro-magnetism, and finally led to the
production of the electro-magnet itself. Ampere had shown that a coil of
wire, or helix, through which an electric current is passing, acted
practically as a magnet, and Arago had magnetized an iron bar by placing
it within such a helix.

In common with the other scientific men of his time, Faraday believed
that since the flow of an electric current invariably produced
magnetism, so magnetism should, in its turn, be capable of producing
electricity. Many investigators before Faraday's time had endeavored to
solve this problem, but it was reserved to Faraday alone to be
successful. Since success in this investigation resulted from some
experiments he made while endeavoring to obtain inductive action on a
quiescent circuit from a neighboring circuit through which an electric
current was flowing, we will first briefly examine this experiment. All
his experiments in this direction were at first unsuccessful. He passed
an electric current through a circuit, which was located close to

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 23 24 25 26

Online LibraryJohn LordBeacon Lights of History, Volume 14 The New Era; A Supplementary Volume, by Recent Writers, as Set Forth in the Preface and Table of Contents → online text (page 21 of 26)