Joseph William Mellor.

A comprehensive treatise on inorganic and theoretical chemistry (Volume 2) online

. (page 121 of 156)
Online LibraryJoseph William MellorA comprehensive treatise on inorganic and theoretical chemistry (Volume 2) → online text (page 121 of 156)
Font size
QR-code for this ebook


with axial ratios a : c=l : 0'9061 ; and, according to A. Johnsen, of sp. gr. 2'009,
and negative double refraction. J. Traube and A. Scacchi obtained trigonal
crystals of sodium lithium sulphate, NaLiS0 4 , with axial ratios a : c=l : 0'5624,
and a=110 54'. The crystals exhibited pyroelectrical phenomena ; and a positive
double refraction. J. Traube also prepared hexagonal prisms or pyramids of
potassium lithium sulphate, KLiS0 4 , with axial ratio a : c=l : 1*6755. The salt
was investigated by G. Wyrouboff, G. Wulff, J. Traube, and J. Schabus. The
crystals have a sp. gr. 2'393 ; they have a feeble negative double refraction ; and
the indices of refraction, according to G. Wulff, are for the ordinary and extra-
ordinary rays respectively T4697 and T4703 with the (7-line ; T4715 and T4721
with the D-line ; and T4759 and T4762 with the j^-line. The crystals are optically
active and exhibit right- and left-handed symmetry. G. Wulff and J. Traube
respectively found for plates 1 mm. thick and sodium light, the rotation of the
plane of polarization 2'8-3-0 , and 3-3-3'8. E. Doumer found the optical
refraction of the soln. to be //,=0'275, and the mol. refraction 126'3. C. Spielrein



INOBGAN1C AND THEORETICAL CHEMISTRY




FIG. 52. Equilibrium Conditions of Ternary
System, K 2 SO 4 Na 2 SO 4 H 2 O, at 34.



studied the conditions of equilibrium of mixed soln. of the component salts.
G. Wyrouboff prepared hexagonal pyramids of rubidium lithium sulphate, RbLiS0 4 ,
with axial ratio a : c1 : T6472 ; they have similar properties to the potassium salt.
H. Rose M prepared crystals of tripotassium sodium sulphate, 3K 2 S0 4 .Na 2 S04,
by melting together equal mols. of the two salts ; digesting the cold mass with
hot water ; and cooling the liquid. Crystallization is attended by crystallo-
luminescence. A similar result was obtained by melting together potassium
sulphate and sodium chloride. J. H. Gladstone, E. Bandrowsky, A. Scacchi,
C. F. Rammelsberg, K. von Hauer, J. Mahony, C. J. B. Karsten, and others have

also worked on the formation of this
salt. F. W. Dupre prepared it by
precipitating the magnesia from soln. of
kainite, sylvinite, etc., and mixing the
clear liquid with sodium chloride. On
evaporation, crystals of the double sul-
phate separate. According to F. Penny,
the so-called plate sulphate, formerly
obtained from kelp, is this double salt.
The term glaserite after the alchemist
C. Glaser (1664) was applied by F. L.
Hausmann (1847) to native potassium
sulphate, found on the lava at Vesuvius,
which J. Smithson's analysis (1813) gave
as containing 71'4 per cent, of potassium
sulphate ; 18' 6 per cent, of sodium
sulphate ; 4' 6 per cent, of sodium

chloride, along with ammonium, copper, and iron chlorides. The term glaserite
is now applied to the double salt K 3 Na(S0 4 ) 2 , whose individuality was established
by J. H. van't HofF. Double sulphates containing other proportions of the con-
stituent salts have been reported, but J. H. van't Hoff showed that it is possible
to prepare a whole series of solid soln. in which the percentage amount of the con-
tained potassium sulphate varies between 78' 6 and 61' 8, and such salts are hence
to be regarded as representing one solid phase. According to B. Gossner, the
double salt crystallizes from soln. of the component sulphates containing
Na 2 S0 4 : K 2 S0 4 in a ratio up to 1:2. The conditions have been worked out by

J. H. van't Hoff and co-workers. R. Nacken's
equilibrium diagram of the ternary system
E 2 S0 4 -Na 2 S0 4 -H 2 0, at 34, is indicated
in Fig. 52. D represents a soln. sat. with
sodium sulphate ; E, potassium, sulphate ;
F, mixed crystals and sodium sulphate ;
and G, potassium sulphate and glaserite ;
between HFGI is the region of mixed crys-
tals ; between IGB, glaserite. E. Janecke
could not confirm R. Nacken's assumption
that a compound of sodium and potassium
sulphates is formed in the solid state.
The crystals of glaserite are trigonal or pseudo-trigonal (monoclinic) with
axial ratio, according to B. Gossner, a : c=l : T2904, and a=87 58'. The typical
habit of the crystals with hexagonal symmetry is illustrated by Fig. 53 ; the first
was prepared by W. C. Blasdale at 100, the second at 50. This makes it easy to
distinguish the crystals of the double salt from those of its components. B. Gossner
gives for the sp. gr. 2'697 (15) ; J. W. Retgers, 2'695. According to F. Penny,
100 parts of water at 103'5 dissolve 40'8 parts of the salt, which melts at a lower
temp, than potassium sulphate. L. Dubrisay studied the temp, of complete
miscibility of cone. soln. of potassium and sodium sulphates. C. Spielrein




FIG.



Crystals of
K 3 Na(S0 4 ) 2 .



Glaserite,



THE ALKALI METALS



689



studied the conditions of equilibrium of mixed soln. of sodium and potassium
sulphates.

The ternary system LiCl Li 2 S0 4 H 2 has been studied by F. A. H. Schreine-
makers and G. M. A. Kayser. 35 Mixed soln. of sodium sulphate and potassium
chloride, and of potassium sulphate and sodium chloride, have been studied quali-
tatively by F. Riidorff, C. J. B. Karsten,
A. Levol, D. Page, and A. D. Keightley,
and G. J. Mulder. The systems were studied
by J. H. van't Hoff and L. T. Reicher, who
found that the component salts react,
forming glaserite, so that 3KC1
+ 2(Na 2 S0 4 .10H 2 0) ^K 3 Na(S0 4 ) 2 -f 3NaCl
-f-20H 2 0. A soln. can be prepared sat.
with respect to the four solid phases,
glaserite, Glauber's salt, potassium chloride,
and sodium chloride, at the transition point
3*7. All the salts indicated in the equa-
tion, other than water, represent solid phases.
As a result, one pair of the salts potassium
chloride and Glauber's salt can exist as
solid phases in presence of the sat. soln.
only below 3' 7, while above that temp., the
other pair of salts glaserite and sodium
chloride can alone exist as solid phases.
If the temp, is above the f.p., and ice is
accordingly excluded, nine univariant sys-
tems, with three solid phases, are theoretically
possible. W. Meyerhoffer and A. P. Saunders
have studied this system in more detail, and
the transition temp, was found to be 4' 4,
not 3'7 ; they worked at 0, 4'4, 16, and
25 ; W. C. Blasdale foUowed up the work
at 50, 75, and 100. W. C. Blasdale's
experimental data for 0, 25, and 50
expressed in eq. mols. of the various salts
per 1000 mols. of water, are plotted in
Figs. 54 to 56, with respect to four axes
representing the four component salts
K 2 C1 2 , Na 2 Cl 2 , Na 2 S0 4 , and K 2 S0 4 -and the
various points are connected by straight
lines, although these lines should probably be
curved.

The diagram actually represents the
horizontal projection of a solid figure. Any
point on it may represent a number of soln.
of different composition, but if perpendiculars
are erected at the limiting points and given
lengths proportional to the total number of
mols. present in the sat. soln. to which these
points correspond, and if the ends of these
perpendiculars are properly connected, any
point which appears on the planes which limit the resulting solid figure can have a
single definite value only.

The diagram indicates the composition of all possible soln. which can be in
equilibrium with the six different solid phases : viz. glaserite, Glauber's salt, sodium
chloride, sodium sulphate, potassium chloride, and potassium sulphate.

VOL. II. 2 Y




690



INORGANIC AND THEORETICAL CHEMISTRY



W. C. Blasdale has applied these results to show what takes place during the
fractional crystallization by the evaporation of soln. containing different pro-
portions of the component salts the separation of (i) sodium and potassium
chlorides ; (ii) potassium chloride and sulphate ; (iii) potassium and sodium sulphate, ;
(iv) sodium sulphate and chloride ; and of (v) potassium salts from mixtures of
sodium and potassium chlorides and sulphates. The results were then extended
to samples of desert brine. J. H. Hildebrand also showed how J. H. van't HofTs
results show the course of the fractional crystallization of sea-water containing
magnesium, sodium, and potassium sulphates and chlorides.

TABLE XL. COMPOSITION OF SATURATED SOLUTIONS IN EQUIVALENT MOLS. PER 1000

MOLS. or WATER.



Points
in Fig.


Sat. with


Na 2 Cl 2


K 2 C1 2


Na 2 S0 4


K 2 S0 4


Sp. gr.







(Fig. 54)










A


Na 2 S0 4


.


. .


5-85


.


1-043


B


K 2 S0 4








. .


7-47


1-063


C


KC1


.


34-05


.


.


153


D


NaCl


53-84


.


.





206


F


Glauber's salt and K 2 SO 4





.


7-99


9-30


118


G


K 2 SO 4 and KC1


-


33-66





1-25


.


H


NaCl and KC1


48-58


12-75





.





I


NaCl and Glauber's salt .


53-28


. .


2-32


.


185


L


K 2 SO 4 , KC1, glaserite


19-41


21-48


2-87





188


N


NaCl, Glauber's salt, KC1


49-44


9-43





3-75


240





KC1, Glauber's salt, glaserite .


41-71


12-15


.


3-35


232


P


K 2 SO 4 , Glauber's salt, glaserite


11-50


16-00


6-0


_


*



25 (Fig. 55).



4


Na 2 S0 4 ....


.





35-41


.


1-212


B


K 2 S0 4


.








12-46


1-088


C


KC1


.


44-62





.


187


D


NaCl


54-90


. .


. .


.


199


E


Na 2 SO 4 and glaserite








39-27


9-63


282


F


K 2 SO 4 and glaserite





. .


8-48


13-69


149


G


K 2 SO 4 and KC1


. .


44-11





1-50


190


H


KC1 and NaCl


46-04


19-66





. .


237


I


NaCl and Na 2 SO 4 .


49-56





12-44





239


J


Na 2 SO 4 and Glauber's salt


29-00





27-5


.


1-243


K


Na 2 SO 4 , Glauber's salt, glaserite


21-92





28-25


7-57


1-273


L


KC1, K 2 SO 4 , glaserite


10-45


35-49





2-30


1-200


M


KC1, NaCl, glaserite


43-08


19-78


4-45


.


1-250


N


NaCl, Na 2 SO 4 , glaserite .


53-75




2-85


11-40


1-266



50 (Fig. 56).



A


Na 2 SO 4 ....


.


.


56-86


.


1-301


B


K 2 S0 4











17-60


1-110


C


KC1





52-10








1-198


D


NaCl


56-24





. .





1-188


E


Na 2 SO 4 and glaserite


. .





58-00


9-72


1-351


F


K 2 SO 4 and glaserite








8-61


17-95


1-307


G


KC1 and K 2 SO 4





51-03





1-90


1-212


H


KC1 and NaCl


44-82


26-61


. .


. .


1-246


I


NaCl and Na 2 SO 4 .


51-93


. .


9-26


,


1-223


L


K a SO 4 , KC1, glaserite


7-21


42-36


,


2-67


1-203


M


KC1, NaCl, glaserite


41-36


27-01


4-00


. .


1-254


N


NaCl, Na 2 SO 4 , glaserite .


40-15


14-58


11-74





1-248



B. Karandeeff found that the fusion curves of the system KF K 2 S0 4 gave
eutectics at 883 (41 mols. per cent, of potassium fluoride), and 788 (83 mols. per



TIIK ALKALI METALS 691

cent, of potassium fluoride). There is a maximum at 887 corresponding with the
m.p. of potassium fluosulphate, K 2 S0 4 .KF, which decomposes below 578.
R. F. Weinland and J. Alfa 36 prepared feebly doubly-refracting monoclinic sphenoidal
crystals of monohydrated tripotassium difluoroclisulphate, K 3 H.S20 7 F2.H 2 0, by
evaporating soln. of potassium sulphate or hydrosulphate with 40 per cent, hydro-
fluoric acid. H. Zirngiebl found the crystals to have the axial ratios a:b:c
=1-0130 : 1 : 0'8218, and =108 39'. C. Pape's dipotassium sodium chloro-
stdphate, K 2 S0 4 .NaCl, was probably a mixture. 0. Ruff and W. Plato found that
mixtures of sodium sulphate with sodium chloride or bromide give the V-fusion
curvewith eutectics respectively at about 650 (46 mols.per cent, of sodium sulphate),
and at 640 (38 mols. per cent, of sodium sulphate) ; while mixtures of potassium
sulphate with potassium chloride or iodide give the V-fusion curve with eutectics
respectively at 720 (25 mols. per cent, potassium sulphate) and 670 (13 mols.
per cent, potassium sulphate). E. Janecke has confirmed these results. H. Rose
obtained a transparent mass during the absorption of sulphur trioxide by potassium
chloride, which, according to C. Schultz-Sellack, has the composition KC1.8S0 3 ,
and which A. W. Williamson and H. Schiff called potassium chlorosulphate. Accord-
ing to S. Zinno, iodine reacts with potassium sulphite, forming potassium iodo-
sulphate, K 2 S0 3 I 2 , in six-sided columns isomorphous with potassium sulphate.
J. C. G. de Marignac obtained what were thought to be trigonal crystals of
trisodium fluorosulphate, Na 2 S0 4 .NaF, in the
preparation of sodium fluoride with hydro-
fluoric acid contaminated with sulphuric acid.
The three-component system, NaCl Na 2 S0 4
H 2 0, was investigated by W. Meyerhoffer
and A. P. Saunders during their study of the
effect of foreign salts, when it was found that
the change from Glauber's salt to anhydrous
sodium sulphate is reduced from 32' 8 to
17*9, when the liquid is sat. with sodium
chloride. The system has also been studied
by J. H. van't Hoff, A. W. Browne, A. Seidell,
and by F. K. Cameron, J. M. Bell, and

W. 0. Robinson. The general results at 25 Fl 57 .__ Terna System,
are indicated in Fig. 57, which represents a Na 2 SO 4 -H 2 O, at 25.

portion of the triangular diagram with Na 2 S0 4
at the top apex, NaCl at the right apex, and H 2 at the left apex. The curve AB
represents the soln. in equilibrium with the solid phase Na 2 S0 4 .10H 2 ; BC, with
the solid phase Na 2 S0 4 ; and CD, with the solid phase NaCl. There is thus no
sign of a double salt. F. A. H. Schreinemakers and G. M. A. Kayser investigated
the ternary system, Li 2 S0 4 LiCl H 2 0.

J. C. G. de Marignac prepared monohydrated trisodium nitratosulphate,
Na 2 S0 4 .NaN0 3 .H 2 0, by evaporating mixed soln. of the component salts. The
crystals were monoclinic prisms corresponding with the mineral darapskite which,
according to A. Osann, have the axial ratios a : b : c=l'5258 : 1 : 0*7514, and
=102 25', and sp. gr. 2'203 ; A. de Schulten found the sp. gr. to be 2197. There
is also the mineral nitroglauberite, 2Na 2 S0 4 .6NaN0 3 .3H 2 0. J. C. G. de Marignac
also prepared dipotassium hydroiodatosulphate, KHS0 4 .KI0 3 , in monoclinic
prisms with the axial ratios a : b : c=l'9288 : 1 : T0346, and j8=93 14'. The
compound was studied by G. S. Serullas, N. A. E. Millon, and C. F. Rammelsberg.
The constitutional formula was denoted respectively by C. W. Blomstrand and
C. Friedheim :

KOSO S .OK

'




G92 INORGANIC AND THEORETICAL CHEMISTRY

REFERENCES.

I G. F. Rouelle, Mem. Acad., 572, 1764.
H. Rose. Pogg. Ann., 38. 122, 1836.

J. d'Ans, Zeit. anorg. Chem., 49. 360, 1906 ; 61. 92, 1909 ; 63. 226, 1909 ; 67. 438, 1910 ;
80. 235, 1913 ; W. Stortenbeker, Rec. Trav. CUm. Pays- Bos, 21. 399, 1902 ; Bemmelen's Oedenk-
boek, 329, 1910 ; P. Pascal, Compt. Rend., 164. 628, 1917 ; H. W. Foote, Journ. Ind. Eng. Chem.,
11. 629, 1919 ; J. Kendall and M. L. Landon, Journ. Amer. Chem. Soc., 42. 2131, 1920 ;
G. C. A. van Dorp, Zeit. phys. Chem., 73. 284, 289, 1910.

4 T. Thomson, Ann. Phil, 26. 435, 1825 ; E. Mitscherlich, Pogg. Ann., 39. 198, 1836 ; H. Rose,
ib., 82. 545, 1851 ; Sitzber. Akad. Berlin, 167, 1851 ; K. Heumann, Buchner's Repert., 84. 358,
1844 ; G. C. Wittstein, ib., 84. 365, 1844 ; J. C. G. de Marignac, Ann. Mines, (5), 12. 45, 1857 ;
H. W. Foote, Journ. Ind. Eng. Chem., 11. 629, 1919 ; G. F. Brindley, Brit. Pat. No. 17796,
1891; C. Schultz, Pogg. Ann., 39. 198, 1836; H. Lescceur, Compt. Rend., 78. 1044, 1874;
G. G. A. van Dorp, Zeit. phys. Chem., 73. 289, 1910 ; J. d'Ans, Zeit. anorg. Chem., 49. 356, 1906 ;
61. 91, 1909 ; Ber., 39. 1534, 1906 ; C. W. Volney, Journ. Amer. Chem. Soc., 23. 489, 820, 1901 ;
24. 222, 1902 ; P. Pascal and M. Ero, Bull. Soc. CUm., (4), 35. 35, 1919 ; P. Pascal, Compt.
Rend., 164. 628, 1917.

5 H. Rose, Pogg. Ann., 82. 545, 1851 ; A. Scacchi, Prodotti chimici cristallizati, spedit alia
esposizione universale di Parigi, Napoli, 9, 1869 ; Mem. Accad. Napoli, 4, 1867 ; G. Wyrouboff,
Bull. Soc. Min., 3. 209, 1880 ; J. C. G. de Marignac, Ann. Mines, (5), 9. 7, 1856 ; W. Stortenbeker,
Rec. Trav. Chim. Pays-Bos., 21. 399, 190L ; J. d'Ans, Zeit. anorg. Chem., 63. 225, 1909 ; 80.
235, 1913 ; B. Gossner, Zeit. Kryst., 38. 158, 1903 ; J. Kendall and M. L. Landon, Journ. Amer.
Chem. Soc., 42. 2131, 1920.

R. Phillips, Phil. Mag., (1), 1. 429, 1821 ; A. Jacquelain, Ann. Chim. Phys., (2), 70. 311,
1839 ; M. Berthelot, ib., (4), 30. 442, 1873.

7 W. Stortenbeker, Rec. Trav. Chim. Pays-Bos, 21. 399, 1902 ; J. van Bemmelerfs Gedenkboek,
Helder, 329, 1910 ; J. d'Ans, Zeit. anorg. Chem., 63. 225, 1909.

8 R. Phillips, Phil. Mag., (1), 1. 429, 1821 ; A. Jacquelain, Ann. Chim. Phys., (2), 70. 311,
1839 ; M. Berthelot, ib., (4), 30. 442, 1873.

9 A. Scacchi, Journ. prakt. Chem., (1), 55. 54, 1852 ; Rend. Accad. Napoli, 932, 1850 ;
W. Stortenbeker, Rec. Trav. Chim. Pays-Bos, 21. 399, 1902 ; J. d'Ans, Zeit. anorg. Chem., 63.
225, 1909 ; G. Wyrouboff, Bull. Soc. Min., 7. 5, 1884 ; H. Rose, Pogg. Ann., 82. 545, 1851 ;
F. Bergius, Zeit. phys. Chem., 72. 354, 1910 ; J. Kendall and M. L. Landon, Journ. Amer. Chem.
Soc., 42. 2131, 1920.

10 C. Schultz, Pogg. Ann., 133. 137, 1868 ; G. C. A. van Dorp, Zeit. phys. Chem., 73. 289,
1910.

II A. Arfvedson, Schweigger's Journ., 22. 93, 1818 ; 34. 214, 1822 ; C. G. Gmelin, Gilbert's
Ann., 62. 399, 1819 ; 64. 371, 1820 ; C. Schultz, Ueber die wasserhaltigen und die wasserfreien
sauren Salze der Schwefelsdure, Gottingen, 1868; Pogg. Ann., 133. 137, 1868; H. Lescceur,
Bull. Soc. Chim., (2), 24. 516, 1872 ; J. Kendall and M. L. Landon, Journ. Amer. Chem. Soc., 42.
2131, 1920 ; J. J. Berzelius, Lehrbuch der Chemie, Dresden, 1824; R. Brandes, Schweigger's Journ.,
51. 430, 1827 ; R. Brandes and E. Firnhaber, Branded Archiv., 7. 173, 1824 ; T. Thomson,
Ann. Phil, 26. 436, 1825 ; H. Rose, Pogg. Ann., 82. 549, 1851 ; J. d'Ans, Zeit. anorg. Chem.,
61. 91, 1909 ; J. C. G. de Marignac, Ann. Mines, (5), 22. 47, 1857 ; T. Graham, Phil. Mag,, (3),
6. 331, 417, 1835 ; Trans. Roy. Soc. Edin., 13. 297, 1836.

12 J. d'Ans, Zeit. anorg. Chem., 49. 356, 1906 ; 61. 91, 1909 ; 80. 235, 1913 ; P. Pascal and
M. Ero, Bull. Soc. Chim., (4), 25. 35, 1919 :

13 V. A. Jacquelain, Ann. Chim. Phys., (2), 70. 311, 1839; G. Tschermak, Sitzber. Akad.
Wien, 43. 382, 1861 ; J. Kendall and M. L. Landon, Journ. Amer. Chem. Soc., 42. 2131,
1920 ; G. F. Brindley, Brit. Pat. No. 17796, 1891 ; C. Schultz, Pogg. Ann., 39. 198, 1836 ;
H. LesccBur, Compt. Rend., 78. 1044, 1874; P. Geiger, Mag. Pharm., 9. 251, 1825; H. Rose,
Pogg. Ann., 82. 549, 1851 ; J. B. Senderens, Bull. Soc. Chim., (2), 2. 728, 1889 ; C. W. Volney,
Journ. Amer. Chem. Soc., 23. 489, 820, 1901 ; 24. 222, 1902.

14 W. Stortenbeker, Rec. Trav. Chim. Pays-Baa, 21. 403, 1903 ; J. d'Ans, Zeit. anorg. Chem.,
63. 226, 1909 ; 67. 438, 1910 ; 80. 235, 1913.

15 H. Erdmann, Arch. Pharm., 232. 15, 1894 ; W. Spring, Bull. Acad. Belgique, 290, 1904 ;
R. Bunsen, Liebig's Ann., 122. 347, 1862.

16 P. W. Bridgman, Proc. Amer. Acad., 52. 89, 1916 ; J. C. G. de Marignac, Ann. Mines,
(5), 12. 47, 1857 ; P. Groth, Chemische Krystallographie, Leipzig, 2. 308, 1908.

17 W. Spring, Bull. Acad. Belgique, 290, 1904 ; Journ. Chim. Phys., 2. 498, 1904 ; A. Jacque-
lain, Ann. Chim. Phys., (2), 70. 311, 1839; G. Wyrouboff, Bull. Soc. Min., 7. 5, 1884; Bull.
Soc. Chim., (2), 41. 634, 1884; H. G. F. Schroder, Dichtigkeitsmessungen, Heidelberg, 1873;
W. Stortenbeker, Rec. Trav. Chim. Pays-Bos, 21. 403, 1913 ; L. Playfair and J. P. Joule, Mem.
Chem. Soc., 2. 401, 1845 ; B. Gossner, Zeit. Kryst., 39. 381, 1904.

18 T. Thomson, Ann. Phil, 26. 436, 1825 ; P. E. Browning, Zeit. anorg. Chem., 29. 140,
1902 ; T. Graham, Phil. Mag., (3), 6. 331, 1835 ; E. Mitscherlich, Pogg. Ann., 18. 152, 173,
1830 ; C. Schultz, ib., 133. 137, 1868 ; K. Kraut, Liebig's Ann., 68. 95, 1861.

19 H. Kopp, Liebig's Ann., 131. 289, 1864 ; M. Berthelot, Ann. Chim. Phys., (5), 4. 106, 130,
1875; J. Thomsen, Thermochemische Untersuchungen, Leipzig, 1. 100, 1882; 3. 93, 232, 1882;



THE ALKALI METALfc 693

R. de Forcrand, Compt. Rend., 143. 98, 1906; P. Chroustschoff, ib., 108. 1003, 1100. 1161,
1889.

20 A. Colson, Compt. Rend., 136. 366, 1903.

21 P. Kremers, Liebig's Ann., 92. 497, 1854.

22 P. L Geiger, Mag. Pharm., 9. 251, 1824; T. Graham, Phil. Mag., (3), 6. 321, 1835;
R. Phillips, Phil. Mag., (1), 1. 429, 1821 ; H. F. Link, CrelVs Ann., \. 26, 1796 ; E. Mitscherlich,
Pogg. Ann., 18. 152, 1830 ; V. A. Jacquelain, Ann. Chim. Phys., (2), 70. 311, 1839 ; R. Brandes
and E. Firnhaber, Brandes' Archiv., 7. 173, 1824 ; 0. Henry and E. Soubeiran, Journ. Pharm.,
11. 437, 1855 ; C. L. Berthollet, Essai de stalique chimique, Paris, 1. 356, 1903 ; H. Rose, Pogg.
Ann., 82. 545, 1851.

23 J. d'Ans, Zeit. anorg. Chem., 49. 360, 1906 ; 61. 92, 1909 ; 63. 226, 1909 ; 65. 229, 1910 ;
67. 438, 1910 ; 80. 285, 1913 ; W. Stortenbeker, Rec. Trav. Chim. Pays-Bos, 21. 399, 1902 ;
J. M. van Bemmelerts Gedenkboek, Helder, 329, 1910.

24 F. Kohlrausch, W ied. Ann., 6. 1, 145, 1879 ; J. C. G. de Marignac, Liebig's Ann. SuppL,
8. 335, 1872.

25 E. B. Moore, Phys. Rev., (1), 3. 321, 1896.

26 C. Forch, Wied. Ann., 55. 100, 1895.

27 P. Kremers, Pogg. Ann., 92. 497, 1854; F. M. Raoult, Compt. Rend., 98. 509, 1884;
G. Tammann, Mem. Acad. St. Petersburg, (7), 35. 1, 1887.

28 K. Earth, Zeit. phys. Chem., 9. 185, 1892 ; F. Kohlrausch, Wied. Ann., 6. 1, 145, 1879.

29 T. Sabalitschka, Ber., 52. 567, 1919 ; H. Thorns and T. Sabalitschka, ib., 50. 1227, 1917 ;

E. Mitscherlich, Pogg. Ann., 18. 152, 173, 1830; K. Stammer, ib., 82. 135, 1851.

30 G. F. Brindley, Brit. Pat. No. 17796, 1891; C. Schultz, Pogg. Ann., 133. 137, 1868;
H. Lescoeur, Compt. Rend., 78. 1044, 1874 ; J. d'Ans, Zeit. anorg. Chem., 80. 235, 1913.

31 C. Schultz- Sellack, Pogg. Ann., 133. 137, 1868; H. Lescoeur, Compt. Rend., 78. 1044,
1874 ; L. Arzalier, ib., 147. 129, 1908 ; W. Spring, Journ. Chem. Phys., 2. 510, 1910 ; J. d'Ans,
Zeit. anorg. Chem., 80. 233, 1913 ; W. Stortenbeker, Rec. Trav. Chim. Pays-Bos, 21. 399, 1902.

32 W. Spring, Journ. Chim. Phys., 2. 504, 1904 ; F. Bergius, Zeit. phys. Chem., 72. 354,
1910 ; J. Kendall and M. L. Landon, Journ. Amer. Chem. Soc., 42. 2131, 1920.

33 E. Mitscherlich, Pogg. Ann., 58. 470, 1843 ; C. F. Rammelsberg, ib., 66. 79, 1845 ; J. Traube,
Neues Jahrb. Min., i, 185, 1894 ; ii, 58, 1892 ; A. Johnsen, Neues Jahrb. Min. B.B., 23. 271,
1907 ; L. Troost, Ann. Chim. Phys., (3), 51. 103, 1857 ; A. Scacchi, Atti Accad. Napoli, 3. 34,
1868 ; E. Doumer, Compt. Rend., 110. 139, 1890 ; G. Wyrouboff, Bull. Soc. Min., 3. 198, 1880 ;
5. 36, 1882 ; 13. 215, 1890 ; G. Wulff, Zeit. Kryst., 17. 959, 1890 ; 21. 255, 1893 ; E. Janecke,
Zeit. phys. Chem., 64. 305, 343, 1908 ; J. Schabus, Bestimmung der Krystallgestalten in chemischen
Laboratorien erzeugter Produkte, Wien, 15, 1855 ; C. Spielrein, Equilibre du sulfate de lithium avec
les sulfates alcalins en presence de leurs solutions mixtes, Paris, 1913.

34 H. Rose, Pogg. Ann., 52. 452, 1863 ; F. W. Dupre, German Pat., D.R.P. 68572, 1892 ;

F. Penny, Phil. Mag., (4), 10. 401, 1855 ; B. Gossner, Zeit. Kryst., 39. 155, 1904 ; 41. 669, 1906 ;
J. H. van't Hoff and H. Barschall, Sitzber. Akad. Berlin, 359, 1903 ; Zeit. phys. Chem., 56. 212.
1906 ; J. W. Retgers, ib., 6. 205, 1890 ; J. H. van't Hoff and L. T. Reicher, ib., 3. 482, 1889 ;
W. Meyerhoffer and A. P. Saunders, ib., 28. 453, 1899; E. Bandrowksy, ib., 17. 240, 1895;
J. H. van't Hoff, Untersuchungen und Bildungsverhdltnisse der ozeanischen Salzablagerung, Leipzig,
220, 1912 ; W. C. Blasdale, Journ. 2nd. Eng. Chem., 10. 344, 347, 1918 ; J. H. Hildebrand, ib.,
10. 96, 1918 ; J. Traube, Neues Jahrb. Min., i, 185, 1894 ; ii, 58, 1892 ; F. L. Hausmann, Hand-
buch der Mineralogie, Gottingen, 2. 1137, 1847 ; J. Smithson, Phil. Trans., 103. 256, 1813 ;
E. Janecke, Zeit. phys. Chem., 64. 305, 343, 1908 ; R. Nacken, Sitzber. Akad. Berlin, 1016, 1910 ;
J. H. Gladstone, Journ. Chem. Soc., 6. 106, 1868; C. J. B. Karsten, Philosophic der Chemie,
Berlin, 99, 1843 ; A. Scacchi, Zeit. deut. geol Ges., 17. 35, 1865 ; C. F. Rammelsberg, ib., 17.
56, 1865 ; Die neuesten Forschungen in der krystallographischen Chemie, Leipzig, 34, 1857 ;
K. von Hauer, Sitzber. Akad. Wien, 40. 597, 1860; Journ. prakt. Chem., (1), 83. 356, 1861 ;
J. Mahony, Chem. News, 21. 150, 1870 ; L. Dubrisay, Compt. Rend., 170. 1582, 1920 ; C. Spielrein,
Equilibre du sulfate de lithium avec les sulfates alcalins en presence de leurs solutions mixtes, Paris
1913.

36 F. Rudorff, Pogg. Ann., 148. 566, 1873 ; F. A. H. Schreinemakers and G. M. A. Kayser,
Chem. Weekbl, 15. 120, 1918 ; C. J. B. Karsten, Philosophic der Chemie, Berlin, 98, 1843 ;



Online LibraryJoseph William MellorA comprehensive treatise on inorganic and theoretical chemistry (Volume 2) → online text (page 121 of 156)