Popular Mechanics Co..

The Boy Mechanic: Volume 1 700 Things for Boys to Do online

. (page 28 of 54)
Online LibraryPopular Mechanics Co.The Boy Mechanic: Volume 1 700 Things for Boys to Do → online text (page 28 of 54)
Font size
QR-code for this ebook


to mix only as much paste as required for immediate use.
- Contributed . by L. Szerlip, Brooklyn, N. Y.



** Crossing Belt Laces [239]

Belt laces should never cross on the side next to the pulley as
they will cut themselves in two.



** How to Make a Candlestick Holder [240]

A candlestick of very simple construction and design can be made
as follows: Secure a piece of brass or

[Illustration: Candle Holder Complete]

copper of No. 23 gauge of a size sufficient to make the pieces
detailed in the accompanying sketch. A riveting hammer and a pair
of pliers will be needed, also a pair of tin shears and a piece of
metal upon which to rivet.

Cut out a piece of metal for the base to a size of 5-1/2 by 5-1/2
in. Trim the sharp corners off slightly. Draw a pencil line all
around the margin and 5/8 in. away from the edge. With the pliers
shape the sides as shown in the illustration.

Next lay out the holding cup according to the plan of development
shown, and cut out the shape with the shears. Polish both of these
pieces, using any of the common metal polishes. Rivet the cup to
the base, and then, with the pliers, shape the sides as shown in
the photograph. The manner of making and fastening the handle is
clearly illustrated. Use a file to smooth all the cut edges so
that they will not injure the hands.

In riveting, care should be taken to round up the heads of the
rivets nicely as a good mechanic would. Do not be content merely
to bend them over. This rounding is easily accomplished by
striking around the rivets' outer circumference, keeping the
center high.

A good lacquer should be applied after the parts have been
properly cleaned and polished, to keep the metal from tarnishing.

[Illustration: Details of Candle Holder]



** A Home-Made Duplicator [240]

The usual gelatine pad, which is the principal part of the average
hectograph or duplicator, is, as a rule, unsatisfactory, as it is
apt to sour and mold in the summer and freeze in the winter,
which, with other defects, often render it useless after a few
months service.

A compound that is almost indestructible is the preparation sold
at art stores as modeling clay. This clay is as easily worked as a
putty and is spread into the tray, which may be of wood or tin,
and the surface leveled by pounding with a mallet or hammer, then
by drawing a straightedge over it.

The surface of the pad is now saturated with pure glycerine. This
is poured upon the surface after it is slightly warmed, covering
the same and then laying a cloth over the pad and allowing it to
stand long enough for the clay to absorb the glycerine, after
which it is ready for use.

The original copy is written with a copying pencil or typewritten
through a hectograph ribbon. A sheet of newspaper is laid upon the
pad and a round stick or pencil is passed over it to make the
surface level and smooth. Remove the newspaper and place the
original copy face down on the leveled surface and smooth it out
in the same way so that every part touches the pad. Remove the
copy in about five minutes and place the clean sheets of paper one
after another on the surface and remove them. From 50 to 75 copies
of the original can be made in a short time.

This compound is impervious to water, so the negative print is
removed by simply washing with a damp sponge, the same as removing
writing from a slate. This makes it possible to place another
original on the pad immediately without waiting for the ink to
vanish by chemical action as in the original hectograph.

The action of the weather has no effect upon this compound and it
is proof against accident, for the tray may be dropped and the pad
dented or cut into pieces, and the clay can be pressed back and
leveled. The only caution is to keep it covered with a cloth
saturated in glycerine while not in use.
- Contributed by A. A. Houghton, Northville, Mich.



** Paper-Clip Bookmark [241]

The combination of a paper clip and a calling card makes a good
bookmark.

[Illustration: Bookmark]

The clip and card can be kept together by piercing the card and
bending the ends of the wire to stick through the holes. The clip
is attached to a page as shown in the sketch.
- Contributed by Thos. DeLoof, Grand Rapids, Mich.



** Aerating Water in a Small Tank [241]

A simple way of producing air pressure sufficient to aerate water
is by the use of a siphon as shown in Fig. 1. The siphon is made
of glass tubes, the longer pieces being bent on one end as shown.
The air receiver and regulating device are attached to the top end
of the lower tube, as shown in Fig. 2. The receiver or air inlet
is the most important part. It is made of a glass tube, 3/4 in. in
diameter and 5 in. long. A hole is filed or blown through one side
of the glass for the admission of air. The ends of the smaller
glass

[Illustration: FIG.1 FIG.2 Forcing Air Through Water]

tubes are passed through corks having a diameter to fit the ends
of this larger tube. The ends of these tubes should be so adjusted
that the continuous drops of water from the upper will fall into
the tube below. The succession of air bubbles thus imprisoned are
driven down the tube and into the tank below.

The regulator is placed in the tube or siphon above the air
receiver. Its purpose is to retard the flow of water from the
siphon above and make it drop rapidly. It consists of a rubber
connecting tube with two flat pieces of wood clamped over the
center and adjusted with screws. The apparatus is started by
clamping the rubber tube tightly and then exhausting the air in
the siphon tube, then placing the end in the upper reservoir and
releasing the clamp until the water begins to drop. If the
reservoir is kept filled from the tank, the device will work for
an indefinite time.
- Contributed by John T. Dunlop, Shettleston, Scotland.



** Imitation Arms and Armor-Part II [242]

Imitation swords, stilettos and battle-axes, put up as ornaments,
will look well if they are arranged on a shield which is hung high
up on a wall of a room or hall, says the English

[Illustration: FIG 1; FIG 2; FIG 3; Three Fifteenth Century
Swords]

Mechanic, London. The following described arms are authentic
designs of the original articles. A German sword of the fifteenth
century is shown in Fig. 1. This sword is 4 ft. long with the
crossguard and blade of steel. The imitation sword is made of wood
and covered with tinfoil to produce the steel color. The shape of
the sword is marked out on a piece of wood that is about 1/8 in.
thick with the aid of a straightedge and pencil, allowing a little
extra length on which to fasten the handle. Cut the sword out with
a saw and make both edges thin like a knife blade and smooth up
with sandpaper. The extra length for the handle is cut about 1 in.
in width and 2 in. long. The handle is next carved and a mortise
cut in one end to receive the handle end of the blade. As the
handle is to represent copper, the ornamentations can be built up
of wire, string, small rope and round-headed nails, the whole
finally having a thin coat of glue worked over it with a stiff
bristle brush and finished with bronze paint.

The crossbar is flat and about 1 in. in width. Cut this out of a
piece of wood and make a center hole to fit over the extra length
on the blade, glue and put it in place. Fill the hole in the
handle with glue and put it on the blade. When the glue is
thoroughly dry, remove all the surplus with a sharp knife. Sheets
of tinfoil are secured for covering the blade. Cut two strips of
tinfoil, one about 1/2 in. wider than the blade and the other 1/4
in. narrower. Quickly cover one side of the blade with a thin coat
of glue and evenly lay on and press down the narrow strip of
tinfoil. Stick the wider strip on the other side in the same way,
allowing equal margin of tinfoil to overlap the edges of the
blade. Glue the overlapping edges and press them around on the
surface of the narrow strip. The crossguard must be covered in the
same manner as the blade. When the whole is quite dry, wipe the
blade up and down several times with light strokes using a soft
rag.

The sword shown in Fig. 2 is a two-handed Swiss sword about 4 ft.
in length, sharp on both edges with a handle of dark wood around
which is wound spirally a heavy piece of brass or copper wire and
held in place with round-headed brass nails. The blade and
crossbar are in imitation steel. The projecting ornament in the
center of the crossguard may be cut from heavy pasteboard and bent
into shape, then glued on the blade as shown.

In Fig. 3 is shown a claymore, or Scottish sword of the fifteenth
century. This sword is about 4 ft. long and has a wood handle
bound closely around with heavy cord. The crossbar and blade are
steel, with both edges sharp. A German poniard is shown in Fig. 4.
This weapon is about 1 ft. long, very broad, with wire or string'
bound handle, sharp edges on both sides. Another poniard of the
fourteenth century is shown in Fig. 5. This weapon is also about 1
ft. long with wood handle and steel embossed blade. A sixteenth
century German poniard is shown in Fig. 6. The blade and
ornamental crossbar is of steel, with both edges of the blade
sharp. The handle is of wood. A German stiletto, sometimes called
cuirass breakers, is shown in Fig. 7. This stiletto has a wood
handle, steel crossbar and blade of steel with both edges sharp.

In Fig. 8 is shown a short-handled flail, which is about 2-1/2 ft.
long with a dark handle of wood, studded with brass or steel
nails. A steel band is placed around the handle near the top. The
imitation of the steel band is made by gluing a piece of tinfoil
on a strip of cardboard and tacking it to the handle. A large
screw-eye is screwed into the top of the handle. The spiked ball
may be made of wood or clay. Cover the ball with some pieces of
linen, firmly glued on. When dry, paint it a dark brown or black.
A large screw-eye must be inserted in this ball, the same as used
on the end of the handle, and both eyes connected with a small
piece of rope twisted into shape. The rope is finished by covering
with tinfoil. Some short and heavy spike-headed nails are driven
into the ball to give it the appearance shown in the illustration.

A Russian knout is shown in Fig. 9. The lower half of the handle
is of wood, the upper part iron or steel, which can be imitated by
covering a piece of wood that is properly shaped with tinfoil. The
whole handle can be made of wood in one piece, the lower part
painted black and the upper part covered with tinfoil. A screw-eye
is screwed into the upper end. A length of real iron or steel
chain is used to connect the handle with the ball. The ball is
made as described in Fig. 8. The spikes in the ball are about 1
in. in length. These must be cut from pieces of wood, leaving a
small peg at the end and in the center about the size of a No. 20
spike. The pegs are glued and inserted into holes drilled into the
ball.

In Fig. 10 is shown a Sclavonic horseman's battle-axe which has a
handle of wood painted dark gray or light brown; the axe is of
steel. The blade is cut from a piece of 1/4-in. wood with a
keyhole saw. The round part is made thin and sharp on the edge.
The thick hammer side of the axe is built up to the necessary
thickness to cover

[Illustration: Ancient Weapons]

the handle by gluing on pieces of wood the same thickness as used
for the blade, and gradually shaping off to the middle of the axe
by the use of a chisel, finishing with sandpaper and covering with
tinfoil. Three large, round-headed brass or iron nails fixed into
the front side of the handle will complete the axe.

At the beginning of the sixteenth century horseman's battle-axes
shaped as shown in Fig. 11 were used. Both handle and axe are of
steel. This axe is made similar to the one described in Fig. 10.
When the woodwork is finished the handle and axe are covered with
tinfoil.



** How to Make a Round Belt Without Ends [243]

A very good belt may be made by laying several strands of strong
cord, such as braided fishline, together as shown in Fig. 1 and
wrapping them as

[Illustration: Method of Forming the Belt]

shown in Fig. 2. When wrapped all the way around, the ends are
tied and cut off. This will make a very good flexible belt; will
pull where other belts slip, and as the tension members are all
protected from wear, will last until the wrapping member is worn
through without being weakened.
- Contributed by E. W. Davis, Chicago.



** Old-Time Magic - The Growing Flower [244]

This trick is performed with a wide-mouthed jar which is about 10
in. high. If an earthern jar of this kind is not at hand, use a
glass fruit jar and cover it with black cloth or paper, so the
contents cannot be seen.

[Illustration: Flower Grows Instantly]

Two pieces of wire are bent as shown in Fig. 1 and put together as
in Fig. 2. These wires are put in the jar, about one-third the way
down from the top, with the circle centrally located. The wires
can be held in place by carefully bending the ends, or using small
wedges of wood.

Cut a wire shorter in length than the height of the jar and tie a
rose or several flowers on one end. Put a cork in the bottom of
the jar and stick the opposite end of the wire from where the
flowers are tied through the circle of the two wires and into the
cork. The dotted lines in Fig. 3 show the position of the wires
and flowers.

To make the flowers grow in an instant, pour water into the jar at
one side of the wide mouth. The cork will float and carry the wire
with the flowers attached upward, causing the flowers to grow,
apparently, in a few seconds' time. Do not pour in too much water
to raise the flowers so far that the wire will be seen.
- Contributed by A. S. Macdonald, Oakland, Calif.



** Water and Wine Trick [244]

This is an interesting trick based on the chemical properties of
acids and alkalies. The materials needed are: One glass pitcher,
filled with water, four glass tumblers, an acid, an alkali and
some phenolphthalein solution which can be obtained from your
local druggist. Before the performance, add a few drops of the
phenolphthalein to the water in the pitcher and rub a small
quantity of the alkali solution on the sides of two of the
tumblers and repeat, only using as large a quantity of the acid as
will escape notice on the remaining tumblers. Set the tumblers so
you will know which is which and proceed as follows: Take hold of
a prepared tumbler with the left hand and pour from the pitcher,
held in the right hand, some of the liquid. The liquid turned into
the glass will become red like wine. Set this full tumbler aside
and take the pitcher in the left hand and pour some of the liquid
in one of the tumblers containing the acid as it is held in the
right hand. There will be no change in color. Repeat both parts in
the same order then begin to pour the liquids contained in the
tumblers back into the pitcher in the order reversed and the
excess of acid will neutralize the alkali and cause it to lose its
color and in the end the pitcher will contain a colorless liquid.
- Contributed by Kenneth Weeks, Bridgeton, N.J.



** Cheap Nails are Expensive [244]

The life of iron shingle nails is about 6 years. An iron nail
cannot be used again in putting on a new roof. Solid zinc nails
last forever and can be used as often as necessary. As zinc is
much lighter than iron, the cost of zinc nails is only about 2-1/2
times that of iron nails.



** Cutting Lantern Slide Masks [245]

It has long been a puzzle to me why round cornered masks are
almost invariably used for lantern slides, when most works of art
are included within rectangular spaces, says a correspondent of
Photo Era. Certainly the present commercial masks are in very poor
taste. The worker who wishes to make the most of every slide will
do well to cut his own masks, not only because of the fact just
mentioned, but also because he can suit the size of the opening to
the requirements of each slide. Slides can be works of art just as
much as prints; so that masking a slide becomes just as important
as trimming a print, and equally worthy of individual treatment.
It is folly to give each slide a mask opening of uniform size and
shape.

When many slides are to be masked, it becomes tedious work to
treat each one separately, unless some special device is used. The
accompanying drawing shows a way to mark masks which is simple,
practical and costs nothing. The drawing is exactly lantern slide
size.

Lay the slide over such a guide and note the size of the opening
best suited to the picture. This will be determined by the
intersection of the ruled lines, which are numbered for
convenience in working. If the size wanted is No. 4 for width and
No. 2 for height, place the guide over a piece of black mask paper
and prick through the proper intersections with the point of a
pin. This outlines the desired

[Illustration: Form for Marking Out Rectangular Lantern Slide
Masks]

opening, which may then be cut out easily with a knife and
straight edge.

The black paper from plate boxes and film rolls is excellent for
making masks. It should be cut up in pieces 3-1/4 by 4 in. and
kept ready for use at any time.



** Relieving the Weight of a Talking Machine Reproducer [245]

Too loud reproduction from a record, the scratching noise
sometimes heard and the forcing of the needle into a soft record,
because the extension arm and reproducer are too heavy, can be
remedied in the following manner: Attach a small ring to the under
side of the horn and use a rubber band to lift the extending arm
slightly.
- Contributed by W. A. Jaquythe, Richmond, Cal.



** How to Make a Thermometer Back in Etched Copper [246]

Etching copper is not a very difficult process. Secure a sheet of
No. 16 gauge copper of the width and length

[Illustration: Copper Thermometer Holder]

wanted for the back of the thermometer. In the design shown the
extreme width is 3-1/2 in. and the extreme length 7 in.

Draw a design. The one shown is merely suggestive. The worker may
change the outline or proportions as desired. The decoration, too,
may be changed. The essential thing is to keep a space upon which
to place the thermometer. This design is in what is known as
two-part symmetry. A line is drawn down the paper and one-half of
the outline and decoration worked out. This done, the paper is
folded along the center line, a piece of carbon paper is inserted
between the folds and the design transferred on the inner surfaces
by tracing with a pencil over the half of the outline previously
drawn. Trace the design and outline upon the metal, using the
carbon paper.

Cut out the outline with metal shears and file the edges smooth.

With a small brush and ordinary asphaltum or black varnish, paint
the design, the margin and the entire back of the metal. When this
coat has dried put on a second and then a third. The asphaltum is
to keep the acid into which the metal is to be immersed later from
eating any part of the metal but the background. Two coats or more
are needed to withstand the action of the acid.

The acid bath is composed of nitric acid and water, about half and
half, or, possibly, a little less acid than water, the mixture
being made by pouring the acid into the water, not the water into
the acid, which is dangerous. Keep this solution off the hands and
clothes, and do not inhale the fumes.

Put the asphalt-coated metal in the bath and allow it to remain
for four or five hours, depending upon the thickness of the metal
and the strength of the acid. With a stick, or a pair of old
tongs, take the metal out of the acid occasionally and examine it
to see how deep the acid has eaten it - 1/32 in. is about right for
the No. 16 gauge.

When etched to the desired depth, remove the piece and with an old
knife' scrape off the asphaltum. Finish the cleaning by scrubbing
with turpentine and a brush having stiff bristles.

If the metal is first covered with turpentine and then heated over
a flame, all the colors of the rainbow will appear on its surface.
These colors fade away in the course of a long time, but they can
be easily revived. Another way to get these colors is to heat the
metal and then plunge it into the acid bath quickly.

A green finish is obtained by painting the background with an acid
stain composed as follows: 1 part ammonia muriate; 3 parts ammonia
carbonate; 24 parts water. If one coat does not give the depth of
color desired, repeat as many times as is necessary, allowing each
coat time to dry before applying the next.

To "fix" this color so that it will not rub off, and to keep the
metal from tarnishing, apply a coat of banana oil or lacquer.

Thermometers of suitable size can be bought in either brass or
nickel. They have holes through their top and bottom ends through
which metal paper fasteners can be inserted, and these in turn put
through holes punched in the copper back.



** To Make an Electric Piano [247]

Make or buy a table, about 3 ft. long and 1 ft. or more wide, and
about 2-1/2 ft. high. Nail a board, A, Fig. 1, about 8 in. wide
and of the same length as the table, to the table, as shown in the
illustration. Paint the table any color desired.

Purchase a dozen or so battery electric bells (they are cheaper if
bought by the dozen) and screw them to the board, as in Fig. 2.
Arrange the bells in the scale shown at B, Fig. 2. Bore two holes
near the posts of each bell for the wires to pass through.

Buttons for the bells may be purchased, but it is cheaper to make
them in the following way: Take a piece of

[Illustration: How the Electric Piano is Constructed]

wood and cut it round, about 2-1/2 in. in diameter and 1/4 in.
thick, Fig. 3, and bore two holes, C and D, through it. Then get
two posts, about 1 in. long, (battery posts will do) and put them
through the holes as in Fig. 4. Cut out a piece of tin, 3/8 in.
wide, punch a hole through it and put in under post E, so that
when it is pressed down, it will touch post F. It may be either
nailed or screwed down.

Make two holes in the table for each button and its wires, as at
H, Fig. 2. Nail or screw the buttons to the table, as shown in
Fig. 5, with the wires underneath. The connections are simple: I,
Fig. 5, is a wire running from one end of the table to the other
end, attached to a post at each end; J is another wire attached in
the same way; L is the carbon wire running from the batteries to
I; M is the zinc wire running from the batteries to wire J; 0
indicates the batteries; P is a wire running from J to one post of
a button; Q is another wire running from the other post of the
button to one of the posts of the bell; R is a wire running from I
to one post of the bell. When the button S is pressed, the bell
will ring. Each button should be connected with its bell in the
same way.
- Contributed by Vincent de Ybarrondo.



** Imitation Arms and Armor - PART III [248]

Maces and battle-axes patterned after and made in imitation of the
ancient weapons which were used from the

[Illustration: Ancient Weapons]

fourteenth to the sixteenth century produce fine ornaments for the
hall or den, says the English Mechanic. The imitation articles are
made of wood, the steel parts represented by tinfoil stuck on with
glue and the ornaments carved out with a carving tool.

An English mace used about the middle of the fifteenth century is
shown in Fig. 1. The entire length of this weapon is about 24 in.;
the handle is round with a four-sided sharp spike extending out
from the points of six triangular shaped wings. Cut the handle and
spike from one piece of wood and glue the wings on at equal
distances apart around the base of the spike. The two bands or
wings can be made by gluing two pieces of rope around the handle
and fastening it with tacks. These rings can be carved out, but
they are somewhat difficult to make. After the glue is dry, remove
all the surplus that has been pressed out from the joints with the
point of a sharp knife blade and then sandpaper the surface of the
wood to make it smooth. Secure some tinfoil to cover the parts in
imitation of steel. A thin coat of glue is quickly applied to the
surface of the wood and the tinfoil laid on evenly so there will
be no wrinkles and without making any more seams than is
necessary. The entire weapon, handle and all, is to appear as
steel.

An engraved iron mace of the fifteenth century is shown in Fig. 2.
This weapon is about 22 in. long, mounted with an eight-sided or



Online LibraryPopular Mechanics Co.The Boy Mechanic: Volume 1 700 Things for Boys to Do → online text (page 28 of 54)