Russell Doubleday.

Stories of Inventors The Adventures of Inventors and Engineers online

. (page 5 of 10)
Online LibraryRussell DoubledayStories of Inventors The Adventures of Inventors and Engineers → online text (page 5 of 10)
Font size
QR-code for this ebook


fastest, and so both were record-breakers. While there are not many
points of resemblance between the first and the fastest boat, one is
clearly the outgrowth of the other, but so vastly improved is the modern
craft that it is hard to even trace its ancestry. The little _Arrow_ is
a screw-driven vessel, and her reciprocating engines - that is, engines
operated by the pulling and pushing power of the steam-driven pistons in
cylinders - developed the power of 4,000 horses, equal to 32,000 men,
when making her record-breaking run. All this enormous power was used to
produce speed, there being practically no room left in the little
130-foot hull for anything but engines and boilers.

There is little difference, except in detail, between the _Arrow's_
machinery and an ordinary propeller tugboat. Her hull is very light for
its strength, and it was so built as to slip easily through the water.
She has twin engines, each operating its own shaft and propeller. These
are quadruple expansion. The steam, instead of being allowed to escape
after doing its work in the first cylinder, is turned into a larger one
and then successively into two more, so that all of its expansive power
is used. After passing through the four cylinders, the steam is
condensed into water again by turning it into pipes around which
circulates the cool water in which the vessel floats. The steam thus
condensed to water is heated and pumped into the boiler, to be turned
into steam, so the water has to do its work many times. All this saves
weight and, therefore, power, for the lighter a vessel is the more
easily she can be driven. The boilers save weight also by producing
steam at the enormous pressure of 400 pounds to the square inch.
Steadily maintained pressure means power; the greater the pressure the
more the power. It was the inventive skill of Charles D. Mosher, who has
built many fast yachts, that enabled him to build engines and boilers of
great power in proportion to their weight. It was the ability of the
inventor to build boilers and engines of 4,000 horse-power compact and
light enough to be carried in a vessel 130 feet long, of 12 feet 6
inches breadth, and 3 feet 6 inches depth, that made it possible for the
_Arrow_ to go a mile in one minute and thirty-two seconds. The speed of
the wonderful little American boat, however, was not the result of any
new invention, but was due to the perfection of old methods.

In England, about five years before the _Arrow's_ achievement, a little
torpedo-boat, scarcely bigger than a launch, set the whole world talking
by travelling at the rate of thirty-nine and three-fourths miles an
hour. The little craft seemed to disappear in the white smother of her
wake, and those who watched the speed trial marvelled at the railroad
speed she made. The _Turbina_ - for that was the little record-breaker's
name - was propelled by a new kind of engine, and her speed was all the
more remarkable on that account. C.A. Parsons, the inventor of the
engine, worked out the idea that inventors have been studying for a long
time - since 1629, in fact - that is, the rotary principle, or the rolling
movement without the up-and-down driving mechanism of the piston.

The _Turbina_ was driven by a number of steam-turbines that worked a
good deal like the water-turbines that use the power of Niagara. Just as
a water-wheel is driven by the weight or force of the water striking the
blades or paddles of the wheel, so the force of the many jets of steam
striking against the little wings makes the wheels of the steam-turbines
revolve. If you take a card that has been cut to a circular shape and
cut the edges so that little wings will be made, then blow on this
winged edge, the card will revolve with a buzz; the Parsons
steam-turbine works in the same way. A shaft bearing a number of steel
disks or wheels, each having many wings set at an angle like the blades
of a propeller, is enclosed by a drumlike casing. The disks at one end
of the shaft are smaller than those at the other; the steam enters at
the small end in a circle of jets that blow against the wings and set
them and the whole shaft whirling. After passing the first disk and its
little vanes, the steam goes through the holes of an intervening fixed
partition that deflects it so that it blows afresh on the second, and so
on to the third and fourth, blowing upon a succession of wheels, each
set larger than the preceding one. Each of Parsons's steam-turbine
engines is a series of turbines put in a steel casing, so that they use
every ounce of the expansive power of the steam.

It will be noticed that the little wind-turbine that you blow with your
breath spins very rapidly; so, too, do the wheels spun by the steamy
breath of the boilers, and Mr. Parsons found that the propeller fastened
to the shaft of his engine revolved so fast that a vacuum was formed
around the blades, and its work was not half done. So he lengthened his
shaft and put three propellers on it, reducing the speed, and allowing
all of the blades to catch the water strongly.

The _Turbina_, speeding like an express train, glided like a ghost over
the water; the smoke poured from her stack and the cleft wave foamed at
her prow, but there was little else to remind her inventor that 2,300
horse-power was being expended to drive her. There was no jar, no shock,
no thumping of cylinders and pounding of rapidly revolving cranks; the
motion of the engine was rotary, and the propeller shafts, spinning at
2,000 revolutions per minute, made no more vibration than a windmill
whirling in the breeze.

To stop the _Turbina_ was an easy matter; Mr. Parsons had only to turn
off the steam. But to make the vessel go backward another set of
turbines was necessary, built to run the other way, and working on the
same shaft. To reverse the direction, the steam was shut off the engines
which revolved from right to left and turned on those designed to run
backward, or from left to right. One set of the turbines revolved the
propellers so that they pushed, and the other set, turning them the
other way, pulled the vessel backward - one set revolving in a vacuum and
doing no work, while the other supplied the power.

The Parsons turbine-engines have been used to propel torpedo-boats, fast
yachts, and vessels built to carry passengers across the English
Channel, and recently it has been reported that two new transatlantic
Cunarders are to be equipped with them.

[Illustration: THE ENGINES OF THE _ARROW_]

A few years after the Pilgrims sailed for the land of freedom in the
tiny _Mayflower_ a man named Branca built a steam-turbine that worked in
a crude way on the same principle as Parsons's modern giant. The
pictures of this first steam-turbine show the head and shoulders of a
bronze man set over the flaming brands of a wood fire; his metallic
lungs are evidently filled with water, for a jet of steam spurts from
his mouth and blows against the paddles of a horizontal turbine wheel,
which, revolving, sets in motion some crude machinery.

There is nothing picturesque about the steel-tube lungs of the boilers
used by Parsons in the _Turbina_ and the later boats built by him, and
plain steel or copper pipes convey the steam to the whirling blades of
the enclosed turbine wheels, but enormous power has been generated and
marvellous speed gained. In the modern turbine a glowing coal fire, kept
intensely hot by an artificial draft, has taken the place of the blazing
sticks; the coils of steel tubes carrying the boiling water surrounded
by flame replace the bronze-figure boiler, and the whirling, tightly
jacketed turbine wheels, that use every ounce of pressure and save all
the steam, to be condensed to water and used over again, have grown out
of the crude machine invented by Branca.

As the engines of the _Arrow_ are but perfected copies of the engine
that drove the _Clermont_, so the power of the _Turbina_ is derived from
steam-motors that work on the same principle as the engine built by
Branca in 1629, and his steam-turbine following the same old, old, ages
old idea of the moss-covered, splashing, tireless water-wheel.




THE LIFE-SAVERS AND THEIR APPARATUS


Forming the outside boundary of Great South Bay, Long Island, a long row
of sand-dunes faces the ocean. In summer groups of laughing bathers
splash in the gentle surf at the foot of the low sand-hills, while the
sun shines benignly over all. The irregular points of vessels' sails
notch the horizon as they are swept along by the gentle summer breezes.
Old Ocean is in a playful mood, and even children sport in his waters.

After the last summer visitor has gone, and the little craft that sail
over the shallow bay have been hauled up high and dry, the pavilions
deserted and the bathing-houses boarded up, the beaches take on a new
aspect. The sun shines with a cold gleam, and the surf has an angry
snarl to it as it surges up the sandy slopes and then recedes, dragging
the pebbles after it with a rattling sound. The outer line of sand-bars,
which in summer breaks the blue sea into sunny ripples and flashing
whitecaps, then churns the water into fury and grips with a mighty hold
the keel of any vessel that is unlucky enough to be driven on them. When
the keen winter winds whip through the beach grasses on the dunes and
throw spiteful handfuls of cutting sand and spray; when the great waves
pound the beach and the crested tops are blown off into vapour, then the
life-saver patrolling the beach must be most vigilant.

All along the coast, from Maine to Florida, along the Gulf of Mexico,
the Great Lakes, and the Pacific, these men patrol the beach as a
policeman walks his beat. When the winds blow hardest and sleet adds
cutting force to the gale, then the surfmen, whose business it is to
save life regardless of their own comfort or safety, are most alert.

All day the wind whistled through the grasses and moaned round the
corners of the life-saving station; the gusts were cold, damp, and
penetrating. With the setting of the sun there was a lull, but when the
patrols started out at eight o'clock, on their four-hours' tour of duty,
the wind had risen again and was blowing with renewed force. Separating
at the station, one surf man went east and the other west, following the
line of the surf-beaten beach, each carrying on his back a recording
clock in a leather case, and also several candle-like Coston lights
and a wooden handle.

[Illustration: A LIFE-SAVING CREW DRILLING WITH BEACH APPARATUS
Hauling in a breeches-buoy and a passenger.]

"Wind's blowing some," said one of the men, raising his voice above the
howl of the blast.

"Hope nothing hits the bar to-night," the other answered. Then both
trudged off in opposite directions.

With pea-coats buttoned tightly and sou'westers tied down securely, the
surfmen fought the gale on their watch-tour of duty. At the end of his
beat each man stopped to take a key attached to a post, and, inserting
it in the clock, record the time of his visit at that spot, for by this
means is an actual record kept of the movements of the patrol at all
times.

With head bent low in deference to the force of the blast, and eyes
narrowed to slits, the surfman searched the seething sea for the shadowy
outlines of a vessel in trouble.

Perchance as he looked his eye caught the dark bulk of a ship in a sea
of foam, or the faint lines of spars and rigging through the spume and
frozen haze - the unmistakable signs of a vessel in distress. An
instant's concentrated gaze to make sure, then, taking a Coston signal
from his pocket and fitting it to the handle, he struck the end on the
sole of his boot. Like a parlour match it caught fire and flared out a
brilliant red light. This served to warn the crew of the vessel of their
danger, or notified them that their distress was observed and that help
was soon forthcoming; it also served, if the surfman was near enough to
the station, to notify the lookout there of the ship in distress. If the
distance was too great or the weather too thick, the patrol raced back
with all possible speed to the station and reported what he had seen.
The patrol, through his long vigils under all kinds of weather
conditions, learns every foot of his beat thoroughly, and is able to
tell exactly how and where a stranded vessel lies, and whether she is
likely to be forced over on to the beach or whether she will stick on
the outer bar far beyond the reach of a line shot from shore.

In a few words spoken quickly and exactly to the point - for upon the
accuracy of his report much depends - he tells the situation. For
different conditions different apparatus is needed. The vessel reported
one stormy winter's night struck on the shoal that runs parallel to the
outer Long Island beach, far beyond the reach of a line from shore. Deep
water lies on both sides of the bar, and after the shoal is passed the
broken water settles down a little and gathers speed for its rush for
the beach. These conditions were favourable for surf-boat work, and as
the surfman told his tale the keeper or captain of the crew decided what
to do.

The crew ran the ever-ready surf-boat through the double doors of its
house down the inclined plane to the beach. Resting in a carriage
provided with a pair of broad-tired wheels, the light craft was hauled
by its sturdy crew through the clinging sand and into the very teeth of
the storm to the point nearest the wreck.

The surf rolled in with a roar that shook the ground; fringed with foam
that showed even through that dense midnight darkness, the waves were
hungry for their prey. Each breaker curved high above the heads of the
men, and, receding, the undertow sucked at their feet and tried to drag
them under. It did not seem possible that a boat could be launched in
such a sea. With scarcely a word of command, however, every man, knowing
from long practice his position and specific duties, took his station on
either side of the buoyant craft and, rushing into the surf, launched
her; climbing aboard, every man took his appointed place, while the
keeper, a long steering-oar in his hands, stood at the stern. All
pulled steadily, while the steersman, with a sweep of his oar, kept her
head to the seas and with consummate skill and judgment avoided the most
dangerous crests, until the first watery rampart was passed. Adapting
their stroke to the rough water, the six sturdy rowers propelled their
twenty-five-foot unsinkable boat at good speed, though it seemed
infinitely slow when they thought of the crew of the stranded vessel off
in the darkness, helpless and hopeless. Each man wore a cork jacket, but
in spite of their encumbrances they were marvellously active.

As is sometimes the case, before the surf-boat reached the distressed
vessel she lurched over the bar and went driving for the beach.

The crew in the boat could do nothing, and the men aboard the ship were
helpless. Climbing up into the rigging, the sailors waited for the
vessel to strike the beach, and the life-savers put for shore again to
get the apparatus needed for the new situation. To load the surf-boat
with the wrecked, half-frozen crew of the stranded vessel, when there
was none too much room for the oarsmen, and then encounter the fearful
surf, was a method to be pursued only in case of dire need. To reach the
wreck from shore was a much safer and surer method of saving life, not
only for those on the vessel, but also for the surfmen.

The beach apparatus has received the greatest attention from inventors,
since that part of the life-savers' outfit is depended upon to rescue
the greatest number.

With a rush the surf-boat rolled in on a giant wave amid a smother of
foam, and no sooner had her keel grated on the sand than her crew were
out knee-deep in the swirling water and were dragging her up high and
dry.

A minute later the entire crew, some pulling, some steering, dragged out
the beach wagon. A light framework supported by two broad-tired wheels
carried all the apparatus for rescue work from the beach. Each member of
the crew had his appointed place and definite duties, according to
printed instructions which each had learned by heart, and when the
command was given every man jumped to his place as a well-trained
man-of-war's-man takes his position at his gun.

Over hummocks of sand and wreckage, across little inlets made by the
waves, in the face of blinding sleet and staggering wind, the
life-savers dragged the beach wagon on the run.

Through the mist and shrouding white of the storm the outlines of the
stranded vessel could just be distinguished.

Bringing the wagon to the nearest point, the crew unloaded their
appliances.

Two men then unloaded a sand-anchor - an immense cross - and immediately
set to work with shovels to dig a hole in the sand and bury it. While
this was being done two others were busy placing a bronze cannon (two
and one-half-inch bore) in position; another got out boxes containing
small rope wound criss-cross fashion on wooden pins set upright in the
bottom. The pins merely held the rope in its coils until ready for use,
when board and pegs were removed. The free end of the line was attached
to a ring in the end of the long projectile which the captain carried,
together with a box of ammunition slung over his shoulders. The
cylindrical projectile was fourteen and one-half inches long and weighed
seventeen pounds. All these operations were carried on at once and with
utmost speed in spite of the great difficulties and the darkness.

While the surf boomed and the wind roared, the captain sighted the
gun - aided by Nos. 1 and 2 of the crew - aiming for the outstretched arms
of the yards of the wrecked vessel. With the wind blowing at an almost
hurricane rate, it was a difficult shot, but long practice under all
kinds of difficulties had taught the captain just how to aim. As he
pulled the lanyard, the little bronze cannon spit out fire viciously,
and the long projectile, to which had been attached the end of the
coiled line, sailed off on its errand of mercy. With a whir the line
spun out of the box coil after coil, while the crew peered out over the
breaking seas to see if the keeper's aim was true. At last the line
stopped uncoiling and the life-savers knew that the shot had landed
somewhere. For a time nothing happened, the slender rope reached out
into the boiling waves, but no answering tugs conveyed messages to the
waiting surfmen from the wrecked seamen.

At length the line began to slip through the fingers of the keeper who
held it and moved seaward, so those on shore knew that the rope had been
found and its use understood. The line carried out by the projectile
served merely to drag out a heavy rope on which was run a sort of
trolley carrying a breeches-buoy or sling.

The men on the wreck understood the use of the apparatus, or read the
instructions printed in several languages with which the heavy rope was
tagged. They made the end of the strong line fast to the mast well above
the reach of the hungry seas, and the surfmen secured their end to the
deeply buried sand-anchor, an inverted V-shaped crotch placed under the
rope holding it above the water on the shore end. When this had been
done, as much of the slack was taken up as possible, and the wreck was
connected with the beach with a kind of suspension bridge.

All this occupied much time, for the hands of the sailors were numb with
cold, the ropes stiff with ice, while the wild and angry wind snatched
at the tackle and tore at the clinging figures.

In a trice the willing arms on shore hauled out the buoy by means of an
endless line reaching out to the wreck and back to shore. Then with a
joy that comes only to those who are saving a fellow-creature from
death, the life-savers saw a man climb into the stout canvas breeches of
the hanging buoy, and felt the tug on the whip-line that told them that
the rescue had begun. With a will they pulled on the line, and the buoy,
carrying its precious burden, rolled along the hawser, swinging in the
wind, and now and then dipping the half-frozen man in the crests of the
waves. It seemed a perilous journey, but as long as the wreck held
together and the mast remained firmly upright the passengers on this
improvised aerial railway were safe.

One after the other the crew were taken ashore in this way, the
life-savers hauling the breeches-buoy forward and back, working like
madmen to complete their work before the wreck should break up. None too
soon the last man was landed, for he had hardly been dragged ashore when
the sturdy mast, being able to stand the buffeting of the waves no
longer, toppled over and floated ashore.

The life-savers' work is not over when the crew of a vessel is saved,
for the apparatus must be packed on the beach wagon and returned to the
station, while the shipwrecked crew is provided with dry clothing, fed,
and cared for. The patrol continues on his beat throughout the night
without regard to the hardships that have already been undergone.

The success of the surfmen in saving lives depends not only on their
courage and strength, supplemented by continuous training which has been
proved time and again, but the wonderful record of the life-saving
service is due as well to the efficient appliances that make the work of
the men effective.

Besides the apparatus already described, each station is provided with a
kind of boat-car which has a capacity for six or seven persons, and is
built so that its passengers are entirely enclosed, the hatch by which
they enter being clamped down from the inside. When there are a great
many people to be saved, this car is used in place of the breeches-buoy.
It is hung on the hawser by rings at either end and pulled back and
forth by the whip-line; or, if the masts of the vessel are carried away
and there is nothing to which the heavy rope can be attached so that it
will stretch clear above the wave-crests, in such an emergency the
life-car floats directly on the water, and the whip-line is used to pull
it to the shore with wrecked passengers and back to the wreck for more.

Everything that would help to save life under any condition is provided,
and a number of appliances are duplicated in case one or more should be
lost or damaged at a critical time. Signal flags are supplied, and the
surfmen are taught their use as a means of communicating with people
aboard a vessel in distress. Telephones connect the stations, so that in
case of any special difficulty two or even three crews may be combined.
When wireless telegraphy comes into general use aboard ship the stations
will doubtless be equipped with this apparatus also, so that ships may
be warned of danger.

[Illustration: LIFE-SAVERS AT WORK
The two men in the center are burying the sand-anchor; of the two at the
right, one is ready with the crotch support the hawser and the other
carries the breeches-buoy; the other three men are hauling the line
which has already been shot over the wrecked vessel.]

The 10,000 miles of the United States ocean, gulf, and Great Lakes
coasts, exclusive of Alaska and the island possessions, are guarded by
265 stations and houses of refuge at this writing, and new ones are
added every year. Practically all of this immense coast-line is
patrolled or watched over during eight or nine stormy months, and those
that "go down to the sea in ships" may be sure of a helping hand in time
of trouble.

The dangerous coasts are more thickly studded with stations, and the
sections that are comparatively free from life-endangering reefs are
provided with refuge houses where supplies are stored and where wrecked
survivors may find shelter.

The Atlantic coast, being the most dangerous to shipping, is guarded by
more than 175 stations; the Great Lakes require fifty or more to care
for the survivors of the vessels that are yearly wrecked on their
harbourless shores. For the Gulf of Mexico eight are considered
sufficient, and the long Pacific coast also requires but eight.

The Life-Saving Service, formerly under the Treasury Department, now an
important part of the Department of Commerce and Labour, was organised
by Sumner I. Kimball, who was put at its head in 1871, and the great
success and glory it has won is largely due to his energy and efficient
enthusiasm.

The Life-Saving Service publishes a report of work accomplished through
the year. It is a dry recital of facts and figures, but if the reader
has a little imagination he can see the record of great deeds of heroism
and self-sacrifice written between the lines.

As vessels labour through the wintry seas along our coasts, and the


1 2 3 5 7 8 9 10

Online LibraryRussell DoubledayStories of Inventors The Adventures of Inventors and Engineers → online text (page 5 of 10)