Scientific American Supplement, No. 299, September 24, 1881 online

. (page 1 of 10)
Online LibraryVariousScientific American Supplement, No. 299, September 24, 1881 → online text (page 1 of 10)
Font size
QR-code for this ebook

Produced by Olaf Voss, Don Kretz, Juliet Sutherland, and
the Online Distributed Proofreading Team



Scientific American Supplement. Vol. XII, No. 299.

Scientific American established 1845

Scientific American Supplement, $5 a year.

Scientific American and Supplement, $7 a year.


* * * * *


I. ENGINEERING AND MECHANICS. - On the Progress and development
of the Marine Engine. - Marine engines. - The marine
boiler. - Steel boilers. - Corrosion of boilers. - How the marine
engine may be improved. - Consumption of fuel. - Evaporative
efficiency of marine locomotive boilers. - Screw propellers

Steam Ferry Boats of the Port of Marseilles. - 2 figures. -
Transverse and longitudinal sections

Opening of a New English Dock. 1 figure

Improved Grain Elevator. 1 figure

Improved Dredger. 1 figure. - Single bucket dipper dredger

Railway Alarm Whistle

Furnace for the Manufacture of Sulphide of Carbon. 1 figure

Brouardel's Dry Inscribing Manometer. 1 figure. - Gas indication
of manometer

Centrifugal Apparatus for Casting Metals. 4 figures. - Centrifugal
metal moulding apparatus

Apparatus for the Manufacture of Wood Pulp. 2 figures. - Dresel's
wood pulp apparatus

Recent Progress of Industrial Science. - Presidential address,
Convention of Mechanical Engineers

The Hoboken Drainage Problem

II. TECHNOLOGY AND CHEMISTRY - On some Recent Improvements
in Lead Processes. By NORMAN C. COOKSON

Apparatus Used in Berlin for the Preparation of Gelatine Plates. -
I. Mixing apparatus. - II. Digestive apparatus. - III. Triturating
apparatus - IV. Washing apparatus - 3 figures

How To Make Emulsions In Hot Weather. By A. L. HENDERSON

The Distillation and Rectification of Alcohols by the Rational
Use of Low Temperatures. By RAOUL PICTET. - 1 figure. - Pictet's
apparatus for the rectification of alcohol by cold

The Removal of Noxious Vapors from Roasting Furnace Gases

New Gas Exhauster. 1 figure

Advance in the Price of Glycerine

Analysis of Oils or Mixtures of Oils Used for Lubricating Purposes

Nitrate of Amyl

III. ELECTRICITY, ETC. - The Electric Light in Earnock Colliery

Lightning and Telephone Wires

Conditions of Flames Under the Influence of Electricity

The Electric Stop-Motion in the Cotton Mill

Electrolytic Determinations and Separations. By ALEX, and M.
A. VON REIS. - Determination of cobalt. - Nickel - Iron. - Zinc. -
Manganese. - Bismuth. - Lead. - Copper. - Cadmium. - Tin. - Antimony. -
Arsenic. - Separation of iron from manganese. - Iron from Aluminum

IV. MEDICINE, SURGERY, ETC. - Treatment of Acute Rheumatism.

Method in Madness

Simple Methods to Staunch Accidental Hemorrhage. By EDWARD
BORCK, M.D. - Bleeding from upper arm. - From arteries in the
upper third of the arm. - From the thigh. - From the foot

Hot Water Compresses in Tetanus and Trismus

V. AGRICULTURE, ETC. - The Cultivation of Pyrethrum and Manufacture
of Powder

Trials of String Sheaf Binders at Derby, England

The Culture of Strawberries. - Garden culture. - Field culture

Some Hardy Flowers for Midsummer

The Time Consuming Match

VI. ARCHITECTURE, ART, ETC. - Suggestions in Decorative Art.
1 figure. - Silver ewer by Odiot, Paris

Artists' Homes. No. l4. - Bent's Brook, Holmwood, Surrey, Eng. -
6 figures. - Perspective, elevations, and plans

VII. OBITUARY. - Achille Delesse, eminent as geologist and mineralogist

* * * * *


The death of this distinguished man must be recorded. An interesting
_résumé_ of his labors by M. Daubree has appeared, from which we take
the following facts. After a training in his native town at the Lyceum
of Metz, which furnished so many scholars to the Polytechnic school,
Delesse was admitted at the age of twenty to this school. In 1839 he
left to enter the Corps des Mines. From the beginning of his career the
student engineer applied himself with ardor to the sciences to which
he was to devote his entire existence. The journeys which he undertook
then, and continued later, in France, Germany, Poland, England, and
Ireland, helped to confirm and develop the bent of his mind. He soon
arrived at important scientific results, and was rewarded, in 1845, by
having conferred to him by the university the course of mineralogy and
geology in the Faculty at Besançon, where Delesse at the same time
fulfilled the duties of engineer of mines. Five years later he returned
to Paris, where he continued his university duties, at first as deputy
of the course of geology at the Sorbonne, then as master of the
conferences at the Superior Normal School. Besides this, he continued
his profession of engineer of mines as inspector of the roads of Paris.
The first original researches of the young _savant_ concern pure
mineralogy; he studied a certain number of species, of which the
chemical nature was yet uncertain or altogether unknown, and his name
was appended to one of the species which he defined. He studied
also, and with success, the interesting modifications called
pseudomorphism - the mode of association of minerals, as well as their
magnetic properties. The attributes of a practical mineralogist aided
him greatly in the culture of a branch of geology to which Delesse has
rendered eminent services, in the recognition of rocks of igneous origin
and of others allied to them. He studied in the field, as well as by
investigations in the laboratory, for fifteen years, with an intelligent
and indefatigable perseverance, and, aided by the results of hundreds of
analyses, eruptive masses of the most varied kind, the knowledge derived
from which threw light upon the principles of science, from granites
and syenites to melaphyres and basalts. After thirty years of study
and progress, other _savants_, without differing from him, progressed
further in the intimate knowledge of rocks; but the historian of
science will not forget that Delesse was the precursor of this order
of research. His studies of metamorphism will long do him honor. The
mineralogical modifications which the eruptive rocks have undergone in
the mass are the permanent witnesses which attracted all his attention.
The chemical comparison of the metamorphic with the normal rock pointed
out distinctly the nature of the substances acquired or lost. One of the
principal results of these analyses has been to lessen the importance
attributed until then to heat alone, and to show in more than one case
the intervention of thermal sources and of other emanations from below,
to which the eruptive rocks have simply opened up tracks.

It is not only upon subjects relating to the history of rocks that
Delesse has touched. Witness his work on the infiltration of water, as
well as his volume relating to the materials of construction, published
on the occasion of the Exhibition of 1855. The nature of the deposits
which operate continually at the bottom of the sea offers points of
interest which well repay the labor of the geologist. He finds there,
indeed, a precious field to be compared with stratified deposits; for
in spite of the enormous depth to which they form a part of continents,
they are of analogous origin. Delesse laboriously studied the products
of the innumerable soundings taken in most of the seas. He arranged the
results in a work which has become classical with the beautiful atlas of
submarine drawings which accompany it. Though he never slackened in his
own especial work, he made much of the work of others. The "Revue des
Progrès de la Géologie," with which he enriched the "Annales des Mines"
for twenty years, would have been sufficient to engross the time of a
less active scientific man, and one less ready to grasp the opening of a
discovery. This indefatigable theorist never neglected the applications
of science: the nature and the changes of the layers which form the
under earth; the course and the depth of the subterraneous sheets of
water; the mineralogical composition of the earth's vegetation, were
represented by him on several charts and plans drawn out in proper form.
His maps which follow the route of many of the great French lines of
railway explain the kind of soil upon which they are laid, and are of
daily use. In the pursuit of his numerous scientific works, Delesse
never failed in discharging his duties in the Corps des Mines. Having
in 1864 quitted the service of the Government of Paris, which he had
occupied for eighteen years, he was made professor of agriculture, of
drainage, and irrigation, at the School of Mines, where he established
instruction in these before being called to found the course of geology
at the Agricultural Institution. Promoted to be Inspector-General of
Mines in 1878, and charged with the division of the south east of
France, he preserved to the end of his life these new duties, for which,
to the regret of the School of Mines, he gave up his excellent lessons
there. During the year of 1870 Delesse fulfilled his duties as a
citizen, as engineer in preparation of cartridges in the department.

His nomination to the Academy of Sciences, which took place on the 6th
of January, 1879, satisfied the ambition of his life. He was for two
years President of the Central Commission of the Geographical Society;
he was also President of the Geological Society. He was not long to
enjoy the noble position acquired by his intelligence and his work.
He suffered from a serious malady, which, however, did not weaken his
intellect, and he continued from his bed of suffering to prepare the
reports for the Council-General of Mines, and that which recently he
addressed to the Academy on the occasion of his election. The greatness
and the rectitude of mind of Delesse, his astounding power of work, his
profound knowledge of science, his sympathetic sweetness, which were
associated with sterling modesty and loyalty of character, made him
esteemed and cherished throughout his whole career. He died on the 24th
of March. - _The Engineer._

* * * * *


(From The Workshop)]

* * * * *


On the afternoon of August 9, Earnock Colliery, near Hamilton, belonging
to Mr. John Watson, of Earnock, was the scene of an interesting
ceremonial which may well be said to mark a new era in mining annals.
In proceeding to win the rich mineral wealth of his estate, Mr. Watson
determined that, in respect of fittings, machinery, and general
appointments, it should be a model, and he has been highly successful
in giving practical effect to his aims. Among other things, he early
resolved to, if at all practicable, substitute the electric light for
the ordinary mode of illuminating the workings, and after investigating
the various systems, he decided on giving that of Mr. Swan a trial.
Accordingly, since April last, Messrs. D. & E. Graham, electrical
engineers, Glasgow, have been engaged fitting up the Swan incandescent
lamp, with modifications, to adapt it for safe use in the mine, and on
Tuesday the inauguration of the new light took place in presence of a
large company of leading gentlemen from Glasgow, Hamilton, and the West.
Arrived at the colliery about half-past one o'clock, the visitors were
received by Mr. Watson, and after a brief space spent in inspecting
the three magnificent winding and fan engines, the Guibal fan, and the
framework for screening the coal, they were conducted by Mr. James
Gilchrist, manager, down into the workings in the ell seam at a depth
of 118 fathoms. Here at the pit bottom, in the roads and at the face,
twenty-one Swan lamps were burning, giving forth a brilliant, steady
flame, the luminosity of which, while sufficient to supply the desired
light, had none of the disagreeable intensity associated with most
systems of electric lighting. Besides the pear-shaped Swan lamp, in
which the glowing or incandescence is carried on _in vacuo_, there is an
outer lantern, the invention of Mr. David Graham, consisting of a strong
glass globe, air-tight, protected with steel guards. Each lamp was also
connected with two different forms of Graham's patent safety air tight
contacts and switches for cutting off and letting on the current, the
effect of which, it is believed, would be to render the lamps quite
safe, even in the presence of explosive gas. At first the intention
was to employ the fan-engine to drive the dynamo-electric machine or
generator, but this was departed from, and an engine of 12 horse-power
was erected in the workshops on the surface for the purpose. From the
generator the electric cables, two in number, are conducted along the
roof of the workshops over ordinary telegraph poles to the pit-head at
No. 2 shaft, and thence down into the workings. From the ridge of the
workshops to the pithead, a distance of several hundred yards, the
cables consist of ordinary copper wire, three-eighths of an inch in
diameter; inside the workshop and below ground, to allow of their safe
handling, they are composed of insulated wires, while on the way down
the shaft they are inclosed in a galvanized tube. Near the bottom of the
shaft, branches are taken off to supply light to the principal roadways
and to the haulage engine-room, the main cables being carried into one
of the sections of the mine a distance of half-a-mile. After a careful
inspection of the lamps at the pit bottom, the party were photographed
in three groups, with the aid of the electric light, by Mr. Annan, of
Glasgow, who may well be credited with the distinction of being the
first to exercise his skill in the bowels of the earth. They were
then led to the haulage engine-room and into the workings, where they
witnessed the effects of the light. At the latter point, while, of
course, the visitors were at a safe distance, a shot was fired, bringing
down a large mass of coal. Having spent fully an hour below ground, the
party returned to the surface. - _Colliery Guardian_.

* * * * *


M. Bede, of Brussels, has an article in _L'Ingénieur-Conseil_ on the
above subject. He considers that a system of such wires forms the best
and most complete security against lightning with which a town can be
provided, because they protect not only the buildings in which they
terminate, but also those over which they pass. At each end they
communicate with the earth, and thus carry off safely any surplus
of electricity with which they may become charged. It is, however,
important that they should be provided with lightning conductors of
their own, to carry off such surplus directly from the transmission wire
to the earth wire, without allowing it to pass through the fine wires of
the induction coils, which it might fuse.

Such lightning conductors usually consist of a toothed plate attached to
one wire, close to another plate not toothed attached to the other wire.
The copper even of such a conductor has been melted by the powerful
current which it has carried away. In telephonic central offices, M.
Bede has seen all the signals of one row of telephone wires fall at the
same moment, proving that an electric discharge had fallen upon the
wires, and been by them conveyed to earth.

This fact shows that wires, even without points, are capable of
attracting the atmospheric electricity; but it must be remembered that
there are two points at every join in the wire. M. Bede insists strongly
upon the uselessness of terminating lightning conductors in wells,
or even larger pieces of water. The experiments of MM. Becquerel
and Pouillet proved that the resistance of water to the passage of
electricity is one thousand million times greater than that of iron;
consequently, if the current conveyed by a wire one square mm. thick
were to be carried off by water without increased resistance, a surface
of contact between the wire and the water of not less than 1,000 square
meters must be established.

It is obvious that a wire let down into a well is simply useless. On
the two-fluid theory, it offers no effectual way of escape to the
terrestrial electricity; according to the older views, it would be
absolutely dangerous, by attracting more electricity from the clouds
than it could dispose of. The author advocates connecting lightning
conductors with water or gas pipes, which have an immense surface of
contact with the earth.

* * * * *


The experiments of the author have been principally directed to the
alterations in shape and color produced in a flame when under the
influence of positive or negative electricity. The flames were arranged
so as to form one electrode of a frictional machine. When charged with
positive electricity the flame became more blue, narrower, and pointed
at the top, while little or nothing of the result was observed in
negative flames.

A peculiar result is that the end of a negative flame returns to its own
conductor, and that, according to the intensity of the electricity, and
also depending on the width of the burner, this turning back of the
flame is either intermittent or constant. Most noticeable are these

When the flame rises from a circular burner, or when burning round a
metallic cylinder, in the latter case it returns to the metallic surface
according to the intensity of electricity in an arc or angle, while the
point of the flame divides into two branches, which separately perform
more or less equal movements. If a body connected to the earth by a
conducting wire is held opposite the flame at some distance, the flame
will in all cases bend toward it; as the body is brought closer,
the flame, if negative, will be repulsed, and, if positive, will be
attracted, at least the upper luminous part of the flame, while the
lower dark body of flame is also repulsed.

This phenomenon explains why a positive flame will burn through wire
gauze, while a negative flame remains below the gauze. The positive
flame becoming pointed explains the fact that this will drive a small
fan wheel, while a negative flame will only just move it.

All these results are most prominently obtained with a pure gas flame, a
stearine, wax, or tallow candle, very indifferently with a spirit flame,
and least from a Bunsen flame rich in oxygen. They may not only be
obtained with flames electrified direct, but also when placed under the
influence of a long "Holtz" machine.

A flame placed between two small disks on the machine bends toward the
negative pole, becomes widened, and, at a certain point of electric
intensity, commences to vibrate and oscillate, exhibiting a peculiar
stratification. Since these phenomena are also least observed in flames
rich in oxygen, it appears to be a general law that carbon and hydrogen
are more strongly attracted by the negative pole, while oxygen is
more attracted by the positive pole, probably like in all polar
differentially attractions, in consequence of a peculiar unipolar
conductivity of the substances.

The return motion of the flame the author explains thus: The point
of the flame loses more electricity by influence than it receives by
conductivity. A paper strip fixed at one end to a large ball shows
similar movements when its free end is pointed and made conductive.
Why principally the negative flame returns may be explained in two
ways - either the point of the flame loses much by radiation, or the base
of the flame is a bad conductor. The former explanation would agree with
the experiments made by Wiedemann and Ruhlmann, the latter with Erdman's
theory of unipolar conductivity of flames. This theory is still further
supported by the resistance on the negative electrodes noticed by
Hittorf, which almost explains Erdman's experiments, because if negative
electricity enters a flame with greater difficulty, then positive
electricity must leave a flame with difficulty. - _W. Holtz, in
Wiedemanris Beiblätter to Poggendorfs Annalen._

* * * * *


The number of inventions for use as stop-motions in and about the
various machines in the cotton mill has been to a certain extent
something like the search after perpetual motion. Very available and
quite satisfactory stop-motions have for a number of years been employed
wherever the thread or sliver has been twisted so that strength was
given it to resist a slight amount of friction, but the main trouble
in the mill has been done after the sliver leaves the railway head and
during its transit in the various processes employed between the railway
head and the spinning frame or mule. Every carder or spinner knows that
where an injury comes to the sliver because the sliver is soft, but
partially condensed and very susceptible to injury, the injury is
magnified and multiplied in every successive process. Virtually the
field was long since abandoned for an accurate quick-working motion that
should be applicable to any and all the machines and to every sliver or
strand of the machine.

This invention was solved practically about two years since, and is
now being employed as applied to drawing frames, doublers, speeder,
intermediate, and slubber. It is a very cunning mechanical appliance,
too, and has found favor to a great extent in England, where several
thousand heads of drawing and speeders are already supplied.

This invention was exhibited at the Centennial in 1876, although in a
somewhat crude state. Since that time it has been materially improved,
and mechanically is very nearly perfect now. Many attempts have been
made to apply a stop motion, which should be quick in its movement and
accurate in its result, to carding engines or the card, not one of
which, until the application of electricity, was worth the time spent in
putting it on. With the electric motion, however, all this is changed,
and the electric attachments are not of necessity so fragile as to be
un-mechanical or to be not practical. The advantage has also been
taken, in a mechanical way, of using cotton as one element, and, being
non-conducting, so that no trouble shall arise from contact with the
working parts of the electrical apparatus with the cotton itself.

To take into consideration all the possibilities that exist from the
railway can to the front of the fine speeder is not needed by the
practical reader, and would be useless to any other. The principle of
this invention is the supplying of a magneto-electric current from
a small magneto-electric machine attached to the card, speeder, or
whatever machine it may be applied to which generates the current, and
this machine is driven by a small belt from the main driving shaft.
The machine in itself weighs but a few pounds, and can be driven by a
half-inch or three quarter-inch belt, and requires a little more power
than a light-running sewing machine.

One pole of the magneto-electric machine is connected by means of a rod
or wire to the machine frame upon which it is to be used, and the
other pole to the electromagnet in the ordinary way of conductivity
of current, which means stretching the wire from one to the other. An
armature is arranged so that when a thread is broken or a sliver or a
strand of roving, the armature drops into a ratchet wheel; this ratchet
wheel is made to revolve by the belt, and whenever it is impeded or
stopped in its course it acts upon mechanism which throws the driving
belt of the machine upon the loose pulley. Electrical contact is made by
a very simple contrivance, and these attachments are only to act in the
case of a breakage of a thread or strand.

As applied to a card, the calender rolls are both connected, one with
the negative and one with the positive pole; when the sliver of cotton
is between the calender rolls there is no connection, but if the sheet
breaks down between the cone and the calender roll, the moment the
calender rolls come in contact the electrical attachment operates and a
stoppage ensues; and in the case, as with the American system, where a

1 3 4 5 6 7 8 9 10

Online LibraryVariousScientific American Supplement, No. 299, September 24, 1881 → online text (page 1 of 10)