Scientific American Supplement, No. 520, December 19, 1885 online

. (page 6 of 9)
Online LibraryVariousScientific American Supplement, No. 520, December 19, 1885 → online text (page 6 of 9)
Font size
QR-code for this ebook

back. The battery is said to be no larger than a man's finger, and to be
attached to the barrel near the muzzle by simple rubber bands, so
arranged that the act of attaching the battery to the barrel
automatically makes connection with the sight; and so arranged also that
the liquid of the battery is out of action except when the musket is
brought into a horizontal position for firing.

To throw a good light upon the target the same inventor has devised a
small electric lamp and projector, which is placed on the barrel near the
muzzle by rubber bands, the battery being held at the belt of the
marksman, with such connections that the act of pressing the butt of the
musket against the shoulder completes the circuit, and causes the bright
cylinder of light to fall on the target, thus enabling him to get as good
a shot as in the day time.

Search lights and incandescent lights are advantageously used with
balloons. In submarine boats electricity will one day be very useful.
Submarine diving will play a part in future wars, and the diver's lamp
will be electrical.

Progress has been made also in constructing "electrical guns," in which
the cartridge contains a fuse which is ignited by pressing an electric
button on the gun. A better aim can be had with it, when perfected, than
with one fired by a trigger. At present, according to Lieut. Fiske, this
invention has not reached the practical stage, and the necessity for a
battery to fire a cartridge is decidedly an objection. But the battery is
very small, needs little care, and will last a long time. The hard pull
of the ordinary trigger causes a movement of the barrel except in the
hands of the most highly skilled marksmen, and this hard pull is a
necessity, because the hammer or bolt must have considerable mass in
order to strike the primer with sufficient force to explode it. Having
the mass, it must have considerable inertia; hence it needs a deep notch
to hold it firm when jarred at full cock, and this deep notch
necessitates a strong pull on the trigger. But with an electric gun the
circuit-closing parts are very small and light, and can be put into a
recess in the butt of the gun, out of the way of chance blows. Thus a
light pressure of the finger is alone needed to fire it, while from the
small inertia of the parts a sudden shock will not cause accidental
closing of the circuit and firing of the gun.

* * * * *


Our readers have already been informed through these columns that,
notwithstanding the refusal of the Attorney-General, Mr. Garland, to
institute suit for the nullification of the Bell patent, application has
again been made by the Globe Telephone Co., of this city, the Washington
Telephone Co., of Baltimore, and the Panelectric Co. These applications
have been referred to the Interior Department and Patent Office for
examination, and upon their report the institution of the suit depends.
The evidence which the companies above mentioned have presented includes
not only the statement of Prof. Gray and the circumstances connected with
his caveat, but brings out fully, for the first time, the claims of
Antonio Meucci.

[Illustration: MEUCCI'S CAVEAT, 1871.]

The latter evidence is intended to show that Meucci invented the
speaking telephone not only before Bell, but that he antedated Reis by
several years. In a recent interview with Meucci we obtained a brief
history of his life and of his invention, which will, no doubt, interest
our readers. Meucci, a native of Italy, was educated in the schools of
Florence, devoting his time as a student to mechanical engineering. In
1844 he gave considerable attention to the subject of electricity, and
had a contract with the government of the island of Cuba to galvanize
materials used in the army. While experimenting with electricity he read
the works of Becquerel, Mesmer, and others who treated largely of the
virtues of electricity in the cure of disease. Meucci made experiments in
this direction, and at one time thought that he heard the sound of a sick
person's voice more distinctly than usual, when he had the spatula
connected with the wire and battery in his mouth.

[Illustration: FIGS. 1 AND 2. - 1849.]

The apparatus he used for this purpose is shown in Fig. 1. It consists of
an oval disk or spatula of copper attached to a wire which was coiled and
supported in an insulating handle of cork. To ascertain that he was able
to hear the sound, he covered the device with a funnel of pasteboard,
shown in the adjoining figure, and held it to his ear, and thought that
he heard the sound more distinctly.

These instruments were constructed in 1849 in Havana, where Meucci was
mechanical director of a theater. In May, 1851, he came to this country,
and settled in Staten Island, where he has lived ever since. It was not
until a year later that he again took up his telephonic studies, and then
he tried an arrangement somewhat different from the first. He used a tin
tube, Figs. 3 and 4, and covered it with wire, the ends of which were
soldered to the tongue of copper. With this instrument, he states, he
frequently conversed with his wife from the basement of his house to the
third floor, where she was confined as an invalid.

[Illustration: FIGS. 3 AND 4. - 1852.]

Continuing his experiments, he conceived the idea of using a bobbin of
wire with a metallic core, and the first instrument he constructed on
this idea is shown in Fig. 5. It consisted of a wooden tube and
pasteboard mouth piece, and supported within the tube was a bundle of
steel wires, surrounded at their upper end by a bobbin of insulated wire.
The diaphragm in this instrument, was an animal membrane, and it was slit
in a semicircle so as to make a flap or valve which responded to the air
vibrations. This was the first instrument in which he used a bobbin, but
the articulation naturally left much to be desired, on account of the use
of the animal membrane. Meucci fixes the dates from the fact that
Garibaldi lived with him during the years 1851-54, and he remembers
explaining the principles of his invention to the Italian patriot.

After constructing the instrument just described, Meucci devised another
during 1853-54. This consisted of a wooden block with a hole in the
center which was filled with magnetic iron ore, and through the center of
which a steel wire passed. The magnetic iron ore was surrounded by a coil
of insulated copper wire. But an important improvement was introduced
here in the shape of an iron diaphragm. With this apparatus greatly
improved effects were obtained.

[Illustration: FIG. 5. - 1853.]

In 1856 Meucci first tried, he says, a horseshoe magnet, as shown in Fig.
6, but he went a step backward in using an animal membrane. He states
that this form did not talk so well as some which he had made before, as
might be expected.

During the years 1858-60 Meucci constructed the instrument shown in Fig.
7. He here employed a core of tempered steel magnetized, and surrounded
it with a large coil. He used an iron diaphragm, and obtained such good
results that he determined to bring his invention before the public. His
national pride prompted him to have the invention first brought out in
Italy, and he intrusted the matter to a Mr. Bendalari, an Italian
merchant, who was about to start for that country. Bendalari, however,
neglected the matter, and nothing was heard of it from that quarter. At
the same time Meucci described his invention in _L'Eco d'Italia_, an
Italian paper published in this city, and awaited the return of

Meucci, however, kept at his experiments with the object of improving his
telephone, and several changes of form were the result. Fig. 8 shows one
of these instruments constructed during 1864-65. It consisted of a ring
of iron wound spirally with copper wire, and from two opposite sides iron
wires attached to the core supported an iron button. This was placed
opposite an iron diaphragm, which closed a cavity ending in a mouthpiece.
He also constructed the instrument which is shown in Fig. 9, and which,
he says, was the best instrument he had ever constructed. The bobbin was
a large one, and was placed in a soapbox of boxwood, with magnet core and
iron diaphragm. Still seeking greater perfection, Meucci, in 1865, tried
the bent horseshoe form, shown in Fig. 10, but found it no improvement;
and, although he experimented up to the year 1871, he was not able to
obtain any better results than the best of his previous instruments had

[Illustration: FIG. 6. - 1856.]

When Meucci arrived in this country, he had property valued at $20,000,
and he entered into the brewing business and into candle making, but he
gradually lost his money, until in 1868 he found himself reduced to
little or nothing. To add to his misery, he had the misfortune of being
on the Staten Island ferryboat Westfield when the latter's boiler
exploded with such terrible effect in 1871. He was badly scalded, and for
a time his life was despaired of. After he recovered he found that his
wife, in their poverty, had sold all his instruments to John Fleming, a
dealer in second-hand articles, and from whom parts of the instruments
have recently been recovered.

[Illustration: FIG. 7. - 1858-60.]

With the view of introducing his invention, Meucci now determined to
protect it by a patent; and having lost his instrument, he had a drawing
made according to his sketches by an artist, Mr. Nestori. This drawing he
showed to several friends, and took them to Mr. A. Bertolino, who went
with him to a patent attorney, Mr. T.D. Stetson, in this city. Mr.
Stetson advised Meucci to apply for a patent, but Meucci, without funds,
had to content himself with a caveat. To obtain money for the latter he
formed a partnership with A.Z. Grandi, S.G.P. Buguglio, and Ango
Tremeschin. The articles of agreement between them, made Dec. 12, 1871,
credit Meucci as the inventor of a speaking telegraph, and the parties
agree to furnish him with means to procure patents in this and other
countries, and to organize companies, etc. The name of the company was
"Teletrofono." They gave him $20 with which to procure his caveat, and
that was all the money he ever received from this source.

The caveat which Meucci filed contained the drawing made by Nestori, and
as shown in the cut, which is a facsimile, represents two persons with
telephones connected by wires and batteries in circuit. The caveat,
however, does not describe the invention very clearly; it describes the
two persons as being insulated, but Meucci claims that he never made any
mention of insulating persons, but only of insulating the wires. To
explain this seeming incongruity, it must be stated that Meucci
communicated with his attorney through an interpreter, as he was not
master of the English language; and even at the present time he
understands and speaks the language very poorly, so much so that we found
it necessary to communicate with him in French during the conversation in
which these facts were elicited.

[Illustration: FIG. 8. - 1864-65.]

In the summer of 1872, after obtaining his caveat, Meucci, accompanied by
Mr. Bertolino, went to see Mr. Grant, at that time the Vice President of
the New York District Telegraph Company, and he told the latter that he
had an invention of sound telegraphs. He explained his inventions and
submitted drawings and plans to Mr. Grant, and requested the privilege of
making a test on the wires of the company, which test if successful would
enable him to raise money. Mr. Grant promised to let him know when he
could make the test, but after nearly two years of waiting and
disappointment, Mr. Grant said that he had lost the drawings; and
although Meucci then made an instrument like the one shown in Fig. 9 for
the purpose of a test, Mr. Grant never tried it. Meucci claims that he
made no secret of his invention, and as instance cites the fact that in
1873 a diver by the name of William Carroll, having heard of it, came to
him and asked him if he could not construct a telephone so that
communication could be maintained between a diver and the ship above.
Meucci set about to construct a marine telephone, and he showed us the
sketch of the instrument in his memorandum book, which dates from that
time and contains a number of other inventions and experiments made by

[Illustration: FIG. 9. - 1864-65.]

[Illustration: FIG. 10. - 1865.]

When Professor Bell exhibited his inventions at the Centennial, Meucci
heard of it, but his poverty, he claims, prevented him from making his
protestations of priority effective, and it was not until comparatively
recently that they have been brought out with any prominence. - _The
Electrical World._

* * * * *


[Footnote: Paper read before Section B, British Association, Aberdeen


The late Dr. Mohr[1] of Bonn, advocated the use of a centrifugal machine
as a means of rapidly drying crystals and crystalline precipitates; but
although they are admirably adapted for that purpose, centrifugal
machines are seldom seen in our chemical laboratories.

[Footnote 1: "Lehrb. d. Chem. Analyt. Titrirmethode," 3d ed., 1870, p.

The neglect of this valuable addition to our laboratory apparatus is
probably owing to the inconvenience involved in driving the machine at a
high speed by means of the ordinary hand driving gear, especially when
the rotation has to be maintained for a considerable length of time. It
occurred to me, therefore, that by attaching the drum or basket of the
machine (or the rotating table of Mohr's apparatus) directly to the
spindle of an electro-motor, the difficulty of driving might be got over,
and at the same time a combination of great efficiency would result, as
the electro-motor, like the centrifugal machine, is most efficient when
run at a high speed. The apparatus shown in the sketch consists
essentially of a perforated basket, A, which is slipped on to a cone
attached to the spindle, S, of an electro-motor, and held in position by
the nut, D. The casing, B, with its removable cover, C, serves to receive
the liquid driven out of the substance being dried. A flat form of the
ordinary Siemens H armature, E, revolves between the poles, P, of the
electro-magnets, M, which are connected by means of the base plate, I.
The brass cross-bar, G, carries the top bearing of the spindle, S, and
prevents the magnet poles from being drawn together.


From four to six cells of a bichromate battery or Faure secondary battery
furnish sufficient power to run the machine at a high speed. An apparatus
with a copper basket four inches in diameter has been found extremely
useful in the laboratory for drying such substances as granulated
sulphate of copper and sulphate of iron and ammonia, but more especially
for drying sugar, which when crystallized in very small crystals cannot
be readily separated from the sirupy mother-liquor by any of the usual
laboratory appliances. For drying substances which act on copper the
basket may be made of platinum or ebonite; in the latter case, owing to
the increased size of the perforations, it may be necessary to line the
basket with platinum wire gauze or perforated parchment paper.

* * * * *


The experiments of M. Marcel Deprez have entered on a decisive phase. The
dynamos are completed, and were put in place on the 20th October, when M.
Deprez carried out some preliminary tests in the presence of a commission
consisting of MM. Collignon, Inspector-General des Ponts et Chaussées;
Delebecque, Ingenieur en Chef du Materiel et de la Traction of the
Northern Railway of France; Contanini, engineer in the same company; and
Sartaux. The generating dynamos made by MM. Breguet, and the receiving
dynamos constructed by MM. Mignon and Rouart, were during a preliminary
trial placed side by side, one portion of the circuit being very short,
and the other twice the distance between La Chapelle and Creil, or
seventy miles. In future experiments the two dynamos will be placed in
their normal positions at each end of the line. The generating machine is
driven by a locomotive engine; the resistance of its field magnets is
5.68 ohms, and of the two armatures 33 ohms. The resistance of the two
armatures of the receiving machine is 36.8 ohms, and the resistance of
the line is 97 ohms; the generator and receiver field magnets are excited
each by a separate machine. Five different trials were made at varying
speeds of the driving shaft; the initial work on this shaft was measured
by a dynamometer, and the available energy of the shaft of the receiving
machine was ascertained by a Prony brake; the other results of the
experiments were deduced from the constants of the machines and from
galvanometric measurements. For the first trials the different elements
were as follows:

1. _Generating dynamos:_
Velocity of shaft 123 revolutions.
Electromotive force at terminals, 3370.25 volts.
" " total 3624.7 "
Available work at driving shaft. 43 h. p.
Electrical work of generator 37.38 "
Difference absorbed 5.62 "

2. _Line:_
Work absorbed by the line. 7.59 h. p.

3. _Receiving dynamos:_
Velocity of shaft 154 revolutions.
Electromotive force at terminals, 2616.25 volts.
" " total 2336.94 "
Electrical work of receiver 24.10 h. p.
Available work on shaft 22.10 "
Difference absorbed 2 "

The duty obtained would thus be 22.10/43 = 51.3 per cent., if the work
absorbed by the exciting machines be not considered. Taking this into
account, it would be reduced to 40 per cent.

In subsequent experiments the speed of the generator was increased
gradually. In the last trial the following were the elements:

1. _Generating dynamos:_
Speed of shaft 190 revolutions.
Electromotive force at terminals 5231.25 volts.
" " total 5469.75 "
Available work on driving shaft, 62 h. p.
Electrical work on generator 53.59 "
Difference absorbed 8.51 "
Work absorbed by armature 2.33 "

2. _Line:_
Work absorbed by conductors 7.21 h. p.

3. _Receiving dynamos_:
Speed of shaft 248 revolutions.
Electromotive force at terminals 4508 volts.
Electromotive force total 4242.67 "
Electrical work of receiver 41.44 h. p.
Work measured on receiver shaft 35.8 "
Difference absorbed 5.64 "
Duty obtained, not including exciting machine 57 per cent.
Duty obtained, including exciting machine 48 "

During the various experiments the current traversing the line varied
from 7.59 amperes to 7.21 amperes. No heating of any kind was observed.

M.J. Bertrand, who communicated a paper to the Academy of Sciences on the
subject, commented on the relatively low speeds. It corresponds to a
linear displacement of the surface armatures, in no case exceeding the
speed of a locomotive wheel. The tension reached 5,500 volts., under very
satisfactory mechanical conditions, and with a current that in no way
endangered the line. This first experiment is certainly encouraging, and
it will be followed by others of a more complete and exhaustive
character. MM. De Rothschild are now embodying a powerful commission of
French and foreign scientists who will follow the subject carefully, and
report upon it. It may be safely predicted that one result of this action
will be the development of a new series of observations of the highest
technical interest and value. - _Engineering._

* * * * *


The trick with the locked and corded box, I believe, is an old one,
though perhaps not in its present form. In late years it has been revived
with improvements, and popularized by those clever illusionists, Messrs.
Maskelyne & Cook and Dr. Lynn, at the Egyptian Hall. There are several
ways of working the trick or, rather, of arranging the special bit of
mechanism wherein the peculiar features of the box consist. The one I am
about to describe is, I think, the best of those I am acquainted with, or
at liberty to divulge. Indeed, I don't know that any method is better,
and this one has the advantage over most others of allowing the performer
to get into as well as out of the box, without leaving a trace of his
means of ingress. It will be seen the box is paneled, and all the panels
look equally firm and fixed. As a matter of fact, one of the panels is
movable, though the closest scrutiny would fail to discover this if the
box and fittings are carefully made and adjusted. Fig. 1 shows the
general appearance of the box, of which the back is the same as the
front. In the box I describe, the end marked + has a movable panel. The
size of the box should be regulated by the size of the performer; but one
measuring 3 feet 6 inches long by 2 feet back to front, and 21 inches
high, exclusive of the lid, which may be 3 inches, will be of general
use. In making the box it is most important that all sides and panels
look alike, and that nothing special in the appearance of the end with
the loose panel should attract notice. Fig. 2 shows this end with
fittings drawn half of full size, and it will he seen from this that the
framing, A, is 3 inches wide by 1¼ inches thick, and the panel, B, ½ inch

[Illustration: FIG. 1.]

It will be noticed that the top and bottom rails of the frame are
rabbeted to receive the panel, but the sides are grooved, the groove in
front rail being double the depth of the one in the back rail.


The dotted line, B, shows the size of the panel; the dotted line, C,
shows the depth of groove in the front rail. From this it will be clear
that the panel is only held in place at the back and front, and that on
sliding it toward the front it will be free out of the groove in the back
rail. Three sides of it are thus free, and a little manipulation will
allow of its being taken out altogether, leaving plenty of space for the
performer to get out, presuming him to have been locked inside the box.

If the panel were to be finished in this way, without further fittings,
the secret would soon be discovered; and I now proceed to show how the
panel is held in place and firm while under examination.

Determine the size of screws that are to be used in fixing the brass
corner clamps. Let us say No. 7 is decided on; and if brass screws are
used, then get a piece of brass, Fig. 4, the exact diameter of the
screw-head, and a little longer than the thickness of the framing. If
iron screws are to be used, then this piece must be iron. Now bore a hole
into which this bolt will fit closely, right through the framing at D,
Fig. 2. It is most important that the hole should be made close up to the
edge of the panel, B, so that when the bolt is in it firmly holds the
panel, and prevents it moving from back to front in the grooving. Now get
a piece of sheet brass, 1/8 inch thick, and cut it to the shape shown by
E, Fig. 2. The width of this piece should not be less than 3/8 inch, and
it must be of such length that the end reaches to the middle of the top
framing, as shown at L, Fig. 2. This piece of brass is sunk in the top
and front framing, as shown by the dotted lines, G, in Figs. 2 and 3, and
also in section in the latter.

When the box is open, the lower or short arm of this lever, which is
shaped as shown full size, at E, Fig. 8, is kept pressed down on the
bolt, D, as shown by the dotted lines, E, E, E, Fig. 2, and E, Fig. 7, by
of the spring, J, Fig. 2.

On the box being closed, a pin on the under edge of lid goes into the
hole, L, Fig. 3, and presses the end of the lever down in such a way as
to raise the claw end of it from D. The thick dotted lines, F, F, F, Fig.
2, show position of lever when box is closed.

It will be noted that the bolt, D, Fig. 4, has a groove cut in it all
around, into which the claw fits. This prevents the bolt being pushed
backward or forward when the box is open.

The lever must be hung as shown, K, Fig. 2. The exact position of this
is immaterial, but it is as well to have the fulcrum as near the end as

1 2 3 4 6 8 9

Online LibraryVariousScientific American Supplement, No. 520, December 19, 1885 → online text (page 6 of 9)