Copyright
William A. (William Allen) Birkemeier.

1990 DELILAH Nearshore Experiment : summary report online

. (page 4 of 10)
Online LibraryWilliam A. (William Allen) Birkemeier1990 DELILAH Nearshore Experiment : summary report → online text (page 4 of 10)
Font size
QR-code for this ebook


901019.0600


T023


10






901019.0634


T022


6hr






901019.0700










901019.0800










901019.0900










901019.1000










901019.1100










901019.1200










901019.1200










901019.1300










901019.1345


T024


6hr






901019.1400










901019.1500










901019.1600










901019.1700










901020.0600


T025


10






(Sheet 3 of 3)



BIO



Appendix B Video Data




Figure B5. 1 October 1990 at 1504 EST




Figure B6. 2 October 1990 at 1630 EST



Appendix B Video Data



B11




Figure B7. 3 October 1990 at 1523 EST




%' hiS^



Figure B8. 4 October 1 990 at 1 1 57 EST



B12



Appendix B Video Data




Figure B9. 5 October 1990 at 1330 EST




Figure BIO. 6 October 1990 at 1990 EST



Appendix B Video Data



B13




Figure B1 1 . 7 October 1 990 at 1 400 EST




fe.,-,j>a^¥&,>-.,.-.



Figure B12. 8 October 1990 at 1525 EST



B14



Appendix B Video Data




Figure B13. 9 October 1990 at 1720 EST




Figure B14. 10 October 1990 at 1650 EST



Appendix B Video Data



B15




Figure B1 5. 11 October 1 990 at 0630 EST




Figure B16. 12 October 1990 at 0921 EST



B16



Appendix B Video Data




Figure B1 7. 13 October 1 990 at 0900 EST




Figure B18. 14 October 1990 at 1000 EST



Appendix B Video Data



B17




Figure B1 9. 15 October 1 990 at 1 000 EST




Figure B20. 16 October 1990 at 1000 EST



B18



Appendix B Video Data




Figure B21 . 17 October 1 990 at 1 300 EST





Figure B22. 1 8 October 1 990 at 1 300 EST



Appendix B Video Data



B19




Figure B23. 19 October 1990 at 1400 EST





Figure B24. 20 October 1994 at 0600 EST



B20



Appendix B Video Data



Video Analysis of Runup



Wave runup data were obtained using an Imaging Technology Incorporated
video image processing system (model ITI-151) interfaced to a Sun host
computer. By using the GCP's as control and knowing the profile coordinates,
time series of wave runup were generated from the video. Runup was
measured along one beach profile line located near the primary cross-shore
array, at longshore coordinate 986 m. Beach profiles were surveyed once per
day near low tide. Camera geometries were computed for each runup
collection.



Runup time series was
performed by the Coastal
Imaging Laboratory at the
Oregon State University,
Corvallis, OR. The runup
analysis technique is based on the
"timestack" method described by
Aagaard and Holm ( 1 989) . ' A
timestack is created by digitizing
every fifth video frame (6 Hz)
and recording the pixel
intensities in the image that
correspond to the profile line
location. These pixel values are
then "stacked" in a matrix and
saved on disk. This results in a
matrix of pixel intensities with
one axis being the pixel position,
directly related to the distance
across the structure, and the
other axis being time. In a
typical timestack (Figure B25)
the runup is clearly visible as a
sharp change in pixel intensity,
between the darker beach on the
left, and the whiter foam of the
runup on the right.

The cross-shore position of
the runup is determined from the
runup edge position in the
timestack image. Image



Onshore DJStance Offshore




RundoWfi

Drying
Sand ^"^





Figure B25.
timestack



Example segment of a runup



Aagaard, T., and Holm, J. (1989). "Digitization of wave run-up using video records,"
Journal of Coastal Research 5 , 547-55 1 .



Appendix B Video Data



B21



coordinates of the edge are directly related to a time series of vertical runup
excursion. Runup position in the timestack is found using edge detection
algorithms combined with manual refinements when edge detection fails. After
the edge detection is completed, image coordinates of the runup edge are
transformed to a time series of vertical runup elevations. The 6-Hz timestack
was decimated and saved as a 2-Hz time series. Standard Fourier wave
analysis techniques were used to compute vertical runup spectra, runup wave
height (Rnio), and peak period. Total record lengths were typically 119 min
and processed in 4096-point (2,048-s) segments that overlapped 50 percent.
The resulting spectra were smoothed in frequency with a 7-point band average,
resulting in spectra with frequency resolution of 0.0034 Hz. Runup spectra
were analyzed at the FRF.

The wave runup spectra were divided into three wave frequency
classifications; infragravity (0.005 to 0.04 Hz), swell (0.04 to 0.15 Hz), and
sea (0.15 to 0.5 Hz). These divisions are not necessarily definitive.
Infragravity waves, for example, can sometimes fall within the swell frequency
range. Total significant runup wave height (R^^) is computed from the sum of
energy from all three wave bands (0.005 to 0.5 Hz). Record length, runup
wave height, period, and percentage distribution of wave energy in the three
categories is presented in Table B5 and plotted in Figure B26.

The cross-shore range of runup was determined firom each time series and is
shown in Figure B27 superimposed on the daily beach profile. Mean runup
position, mean water level recorded at the end of the FRF pier, and incident
wave Hn,o measured at the 8-m array are also listed in the figure. Beach slopes
(P) in Figure B27 were computed between the two cross-shore positions on the
profile that were +20 cm vertically from the mean runup position. This beach
slope and incident wave conditions were used to determine a dimensionless
surf-similarity parameter, the Irribaren number ^^ ' ^s a measure of the
dissipative/reflective nature of the beach. The Irribaren numbers shown in
Figure B27 were computed as:

. - P



^h}'"



K^o;



where

Hq = incident deepwater significant wave height
Lo = deepwater wavelength



B22 Appendix B Video Data



Table B5

Video Runup Data


Date & time


Rec length(s)


R^(m)


Tp(s)


% IG energy


%Swell energy


% Sea energy


901005 0824


7200


1.0


13.6


15


82


3


901005 1300


7200


0.4


16.7


24


71


5


901006 0713


7020


1.1


11.9


12


85


3


901006 0917


7200


0.8


11.9


28


70


2


901006 1235


6900


0.5


11.9


32


65


3


901007 0728


6902


0.8


10.6


29


67


4


901007 0930


7200


0.9


13.6


39


58


3


901008 0813


7200


0.7


23.3


45


53


2


901008 1023


7200


0.7


21.6


47


50


3


901008 1330


6900


0.4


23.3


62


37


1


901009 0900


7200


0.9


20.1


48


50


2


901009 1107


7200


0.9


21.6


47


50


3


901009 1330


7200


0.7


23.3


53


46


1


901010 0954


7200


1.0


23.3


51


47


2


901011 0630


7200


0.8


20.1


39


59


2


901011 0847


7200


1.1


17.7


37


61


2


901011 1055


7200


1.3


20.1


39


58


3


901011 1305


7200


1.4


15.8


29


67


4


901012 0719


7200


1.3


21.6


28


69


3


901012 1226


7200


2.2


16.7


16


82


2


901012 1538


7200


2.4


14.9


28


71


2


901013 0645


7200


1.7


12.4


35


63


2


901013 0901


7200


1.7


13.0


32


66


2


901013 1116


7200


2.3


11.4


22


76


3


901013 1339


7199


2.6


11.9


17


80


3


901013 1554


5400


2.6


11.9


19


78


3


901014 0800


7200


1.2


10.2


22


73


6


901014 1011


7200


1.2


10.6


26


70


4


901014 1330


7200


2.1


13.0


22


75


3


901014 1545


6000


2.5


14.2


16


82


2


901015 1141


7200


1.5


11.4


18


79


3


901015 1351


7200


2.2


11.9


17


80


4


901016 0728


7200


1.4


12.4


23


75


3


901016 0937


7200


1.0


9.9


30


67


3


901016 1148


7200


1.0


14.2


27


70


4


901016 1606


5400


1.8


10.6


20


78


2


901017 0710


7200


1.4


13.6


20


77


3


901017 0919


7200


1.0


16.7


22


75


3


901017 1129


7200


0.8


14.2


20


77


3


901017 1338


7200


0.9


14.9


20


77


3


901017 1550


6000


1.2


14.9


19


78


3


901018 0700


7200


1.6


13.6


11


85


4


901018 1116


6824


1.2


16.7


12


83


5


901018 1311


6840


1.2


16.7


16


79


5


901019 0710


7200


1.3


14.2


13


82


5


901019 0919


7200


1.4


14.2


14


81


4


901019 1213


7200


1.1


14.9


21


76


3


901019 1423


7200


1.1


13.6


19


79


3



Appendix B Video Data



B23



3.0 -
















2.5 -

i 1.0-

q: 0.5 -:


.


■ ^




^ •


-


" V


■-


~
















10/5


1

10/7


' 1

10/9


' 1 ' 1
10/11 10/13


1

10/15


' 1
10/17


1
10/19


60 -
















50 -
















"S- 40 -
















~^ 30 -

1- 20 -

10 -

10


."


.-


■w ^


V. •■. ^


_,


S-. •■'


.-


/5


' 1
10/7


' 1
10/9


' 1 ' 1
10/11 10/13


1
10/15


' 1 '

10/17


1
10/19


O 70-1
- 60 -
S 50 -
0} 40 -

^ 10 ^






iF *


". . . ■•




1i




■"


.




. V


'"■■ -


• *^


..-




1 1


' 1


' 1 ' 1


1


1 '


1


10/5


10/7


10/9


10/11 10/13


10/15


10/17


10/19


nergy Swell

o o o o o

1,1,1,1,1








■.




■.'




■..


UJ 40-
















^ 30 —
















10


/5


1
10/7


' 1
10/9


' 1 ' 1

10/11 10/13


1
10/15


1 '

10/17


1
10/19


ro 6 — ,
0) .
M 5 -

















^ 3 —





















iS 2-




.





.. .










10






■ ■










/5


1

10/7


1 1
10/9


' 1 ' 1
10/11 10/13


1
10/15


1 1
10/17


1

10/19








OCTOBER 1990









Figure B26. Time series of wave height, period and energy derived from
DELILAH runup videos



B24



Appendix B Video Data




■ Mean Water Level

• Average Runup Position



824 EST 5 OCT


1990


fo


2.18


Beach Slope


0.083


Ueon Cross-shore


111.0 n


Meon Elevation


0.73 rr


Hmo


0.47 rr



1300 EST S OCT 1990

fo '"S

Beach Slope 0.047

Meon Cross-shore 132.0 •

Meon Elevotion -0,36 r

Hmo 0.48 rr



Beoch Slope
Mean Cross-shore
Mean Elevolion



0.095
107.0 n
1.09 m
0.54 m



917 EST 6 OCT 1990



Beoch Slope
Mean Cross-shore
Meon Elevation



1235 EST 5 DC-

fo

Beach Slope
Meon Cross-shor)
Meon Elevolion



0.058
112.5 nr
0.55 m
0.59 m



0.065
136.5 r,
-0.61 m
0.51 m



7 OCT 1990
1.26



Beoch Slope
Meon Cross-shon
Mean Elevation



0.074
107.5 t
1.22 m
0.64 n



: Range of Runup
■■ Beoch Slope



100 120 140 160 180

Cross— Shore Position (m)



Figure B27. Runup excursion on beach profiles (Sheet 1 of 8)
Appendix B Video Data



B25




Mean Woter Level
Average Runup Position



930 EST


7 OCT 1990


fo




1.42


Beoch Slope




0.078


Meon Cross-


shore


lU.O


Meon Elevot


on


0.77 n


Hmo




0.55 r


81J EST


8 OCT 1990


fo




0.54


Beoch Slope




0.041


Meon Cross-


shore


112.5


Meon Elevot


on


0.85 r


Hmo




0.78 n



1023 EST

fo

Beoch Slope

UeonCross-

Meon Elevot;

Hmo



8 OCT 1990
0.66
0.042
■shore 117.0 n
on 0.71 m

0.68 rr



1330 EST

fo

Beoch Slope

Meon Cross-sho

Meon Elevotion

Hmo



8 OCT 1990
0.59



900 EST


9 OCT 1990


Beoch Slope
Meon Cross-
Meon Elevot


shore


0.99
0.073
110.0
1.02 n



1107 EST

Beoch Slope
Mean Cross-
Meon Elevoti



9 OCT 1990
0.99
0.073
111.5 rr
0.89 rr



= Range of Runup
= Beoch Slope



100 120 140 160 180

Cross— Shore Position (m)



Figure B27. (Sheet 2 of 8)



B26



Appendix B Video Data




: Meon Water Level

■■ Average Runup Position



1330 EST 9 OCT 1990

fo '-^^

Beach Slope 0.111

Meon Cross-shore 120.5 i



954 EST 10 OCT 1990

fo °-^^

Beoch Slope 0.087

Meon Cross-shore 107.5 i

Meon Elevation 1.10 m



630 EST


11 OCT


1990


fo




0.64


Beoch Slope




0.08


Meon Cross


-shore


117.0


Meon Elevotion


0.14


Hmo




1.71 n



1 Cross-shore 111.0 i



1055 EST 11 OCT 1990



Meon Cross-shore 106.0 i
Meon Elevotion 1.10 m



1305 EST 11 OCT 1990

fo '-2°

Beoch Slope 0.135

Meon Cross-shore 105.5 i

Mean Elevotion 1.23 m

Hmo 1.49 m



= Range of Runup
= Beacli Slope



100 120 140 150 180

Cross-Shore Position (m)



Figure B27. (Sheet 3 of 8)



Appendix B Video Data



B27




: Mean Woter Level

■ Average Runup Position



719 EST


12 OCT


1990


f„






1.03


Bcc


ch Slope


0.098


Mt


n Cross


-shore


110.5


Me


n Elevo


lori


0.36 n



1226 EST

Seoch Slope
Meon Cross-shore
Meon Elevotion



12 OCT 1990
0.93



0.120
102.0 I
1.33 rr



1538 EST 12 OCT 1990


fo


1.79


Beoch Slope


0.134


Meon Cross-shore


103.0


Meon Elevotion


1.22 rr


Hmo


2.04 r



645 EST 13 OCT 1990
Beoch Slope 0.116



901 EST 13 OCT 1990



Beach Slope
Meon Cross-shori



0.114
106.5 I
0.65 n
2.09 n-



100 120 140 160 180

Cross-Shore Position (m)



1116 EST 13 OCT 1990

l„ I'S

Beoch Slope 0.126

Meon Cross-shore 102.5 i

Meon Elevation 1.12 m



— — = Range of Runup
= Beoch Slope



Figure B27. (Sheet 4 of 8)



B28



Appendix B Video Data




■ Meon Woter Level

■ Average Runup Position



1339 EST


IJ OCT 1990


f„






1.61


Be


ach Slope




0.16C


Me


on Cross-


-shore


99.0


Me


on Elevot


on


1.63


Hrr


o




1.99



1554 EST


3 OCT 1990


(z




1.74


Beoch Slope




0.150


Meon Cross


-shor


99.0


Meon Elevot


on


1.62 n



0.091
109.0 I
0.29 rr



1011 EST 14 OCT 1990

Beoch Slope
Meon Cross-shore



Me



0.085

107.5 n

0.42 m

1.23 m



14 OCT 1990
2.16



Beoch Slope
Mean Cross-shori
Meon Elevotion



0.155
99.5 n
1.20 m
1.05 m



1545 EST


4 OCT


1990


Beoch Slope
Meon Cross-
Meon Elevot


shore


2.31
0.190
98.5
1.44 n



= Ronge of Runup
= Beoch Slope



100 120 140 150 180

Cross-Shore Position (m)



Figure B27. (Sheet 5 of 8)



Appendix B Video Data



B29




Mean Water Level
Average Runup Position



712 EST


15 OCT


1990


f






2.09


B<


och Sic


P5


0.144


Meon Cro


ss-shorc


103.0


M


on Elevotion


0.90


Hr


no




1.08 n



1141 EST

(o

Beach Slope
Meon Cross-sho
Meon Elevotion



15 OCT 1990
1.73



0.113
108.5 I
0.25 nr
0.88 n



1351 EST 15 OCT


1990


L


2.01


Beach Slope


0.131


Meon Cross-shore


102.5


Meon Elevotion


1.00


Hmo


0.95



16 OCT 1990
0.97



Beoch Slope
Meon Cross-sho
Meon Elevation



0.092
102.0 r
0.83 rr
1.24 m



16 OCT 1990
0.96
e 0.078

-shore 109.0 1
tion 0.27 m



1148 EST

Beoch Slope
Meon Cross-sho
Meon Elevotion



16 OCT 1990
0.99



0.079
109.5 .
0.26 nr
1.09 m



Range of Runup
Beach Slope



100 120 140 160 180

Cross— Shore Position (m)



Figure B27. (Sheet 6 of 8)



B30



Appendix B VicJeo Data




Meon Water Level
■ Average Runup Position



1606 EST 16 OCT 1990


fo


0.93


Beoch Slope


0.117


Meon Cross-shore


100.0


ueon Elewotion


1.03 n


Hmo


1.09 n



710 EST


7 OCT 1990


fo




1.22


Beach Slope




0.103


Meon Cross


-shore


101.0


Ueon Elevol


on


0.95 r


Hmo




0.93



919 EST 17 OCT 1990


fo


1.10


Beach Slope


0.077


Ueon Cross-shore


108.5


Ueon Elevotion


0.33


Hmo


0.83



1129 EST 17 OCT 1990

Beoch Slope 0.070

Mean Cross-shore 113.0 r

Mean Elevotion -0.04 r

Hmo 0.89 IT



1338 EST 17 OCT 1990


fo


0.86


Beoch Slope


0.079


Ueon Cross-shor


e 110.0


Ueon Elevotion


0.23


Hmo


0.95



1550 EST 17 OCT 1990


fo


1.09


Beoch Slope


0.087


Ueon Cross-shore


103.0


Ueon Elevotion


0.76 n


Hmo


0.81 n



= Range of Runup
= Beach Slope



100 120 140 160 180

Cross-Shore Position (m)



Figure B27. (Sheet 7 of 8)
Appendix B Video Data



B31




^ = Meon Water Level
O = Average Runup Position



18 OCT 1990
0.61
e 0.097

-shore 101.5 n
t;on 0.91 m

0.93 rr



1116 EST IS OCT 1990

Beoch Slope 0.103

Meon Cross-shore 112.5 n

Ueon Elevotion -0.11 m

Hmo 1.02 m



1311 EST 18 OCT 1990

Beach Slope 0.094

Meon Cross-shore 112.0 n
Meon Elevation -0.06 r

Hmo 1.05 m



19 OCT 1990
0.65



Beach Slope
Meon Cross-shore
Meon Elevotion



Beoch Slope
Meon Cross-sho
Meon Elevation



0.092
99.0 m
1.06 m



0.092
101.0 n
0.86 rr
1.18 m



19 OCT 1990
0.69



0.083



1213 EST

f.

Beoch Slope

Meon Cross-shore 109.0 i

Meon Elevation 0.12 m

Hnno 1.07 m



^ = Ronge of Runup
- = Beoch Slope



100 120 140 160 180

Cross-Shore Position (m)



Figure B27. (Sheet 8 of 8)



B32



Appendix B Video Data



Appendix C
Sediments



Nineteen sediment samples were collected along profile line 230 on
15 October 1990. Beach samples were scraped from the top layer of the beach
face. Offshore samples were collected with a clamshell grab sampler by a
person atop the Coastal Research Amphibious Buggy (CRAB) deck. The
samples were then washed, dried, split, and sieved for analysis of grain size and
sorting. The sieving was done with a sonic sifter, which sorts the sediments
through small diameter sieves using high-frequency vibrations.

The size distribution of each sample, along with its relative position along
the profile, are shown in Figure CI . The overall natare of the cross-shore size
distribution is typical of sediments at the Field Research Facility with a wide
range in sediment size on the beach face and in the inner bar/trough region.
Seaward of the inner bar, the sediment is composed of fine, well-sorted
sediments. Detailed tables and plots describing each sample are shown in
Figures C2 through C20.



Appendix C Sediments



CI




C2



Appendix C Surveying



DELILAH Sediment Sample - 1

Location: Longshore = 1005.8 m. Cross-shore = 44.6 m. Depth = 5.85 m

SIZE CLASSIFICATION: Gravel Sand - Silt Clay

CBy Weight Percent) Coarse Medium Fine

Wentworth 0.02 30.97 55.88 13.10 0.02 0.00

Unified 0.00 0.02 42.96 56.98 0.03 0.00

STANDARD STATISTICS: Method of Moments Folk Graphic Measures Grain Size





Median


Diameter










1


40 phi





380 mm




Mean


Diameter






1.29 ph




1


30 phi





408 mm


Standard Deviation






0.70 ph







69 phi










Skewness






-0.47




-0


21










Kurtosis






2.94




1


01






iam.


Weight


Diam.


We


ght


Diam.


Weight


Diam.


Weight


Diam.


Weight


phi)


( 7. )


Cphi)
-1.25





023


(phi),
-1.00


( % ).
0.000


(phi)
-0.75


( y- )

0.057


(phi)
-0.50


( 7. )


1.50


0.000


0.540


0.25


1.905


0.00


2


513


0.25


4.811


0.50


4.792


0.75


5.358


1.00


10.995


1.25


11


995


1.50


12.074


1.75


17.440


2.00


14.376


2.25


7.410


2.50


3


924


2.75


1.200


3.00


0.423


3.25


0.098


3.5


0.026


3.75





008


4.00


0.015


4.25


0.019







Sampto: Dalllah 1








Uoman


UaasuraB




* Mean


1^9 PHI




Std. Dav.


0.70 PHI




Skawnasa


-0.47




Kurtosis


2.94




FolkM


asuras




o Median


1.30 PHI




Figure C2. Grain size distribution for sedinnent sample 1,15 October 1990

Appendix C Sediments



C3



Diam. Weight Diam. Weight Diam.
Cphi) ( % ) (phi) ( X ) (Phi)



DELILAH Sediment Sample - 2

Location: Longshore = 1005.8 m. Cross-shore = 52.3 m, Depth = 7.51 m



SIZE CLASSIFICATION:
(By Weight Percent)
Wentworth
Unified



Grave L - Sand Silt Clay

Coarse Medium Fine

2.16 67.08 23.88 6.81 0.06 0.00

0.00 2.16 73.80 23.98 0.06 0.00



STANDARD STATISTICS: Method of Moments Folk Graphic Measures Grain Size

0.55 phi 0.685 mm
0.64 phi 0.64 phi 0.644 mm

0.89 phi 0.89 phi

0.25 0.15

3.04 1.00

Weight Diam. Weight
( % ) CPhi) ( % )



Median Diameter

Mean Diameter

Standard Deviation

Skewness

Kurtosis



Weight Diam.
( % ) (phi)



-2.00 0.000 -1.75 0.617 -1.50 0.000 -1.25 1.040 -1.00 0.502



-0.75
0.50
1.75
3.00
4.25



1.753
11.782
6.958
0.762
0.060



-0.50
0.75
2.00
3.25



4.274
9.654
4.993
0.181



-0.25
1.00
2.25
3.5



6.692
11.335
2.527
0.048



0.00
1.25
2.50
3.75



7.774
6.716
1.064
0.000



0.25
1.50
2.75
4.00



13.819
5.217
2.231
0.000



Sampl»: DELILAH 2




Grain SlI© (PHI)



C4



Figure C3. Grain size distribution for sediment sample 2, 15 October 1990

Appendix C Surveying



DELILAH Sediment Sample - 3

Location: Longshore = 1011.97 m, Cross-shore = 91.41 m. Depth = 2.86 m



SIZE CLASSIFICATION:


Gravel -


Sand -




Silt


Clay


(By Weight Percent)


Coarse


Medium


Fine






Wentworth


11.96 51.28


22.37


14.39


0.00


0.00


Unified


0.00 11.96


56.39


31.65


0.00


0.00



STANDARD STATISTICS: Method of Moments Folk Graphic Measures Grain Size



Median Diameter

Mean Diameter

Standard Deviation

Skewness

Kurtosis



0.52 phi
1.26 phi
-0.12
2.19



0.52 phi
0.55 phi
1.31 phi
-0.01
0.83



0.696 mm
0.697 mm



Diam. Weight Diam. Weight Diam. Weight Diam. Weight Diam. Weight
Cphi) ( % ) (phi) ( % ) (phi) ( % ) (phi) ( % ) (phi) ( % )



-2.25
-1.00
0.25
1.50
2.75



0.000
3.090
7.895
4.438
2.739



-2.00

-0.75

0.50

1.75

3.00



3.014
4.992
5.953
6.491
1.264



-1.75
-0.50
0.75
2.00
3.25



0.917
6.280
5.829
6.336
0.291



-1.50

-0.25

1.00

2.25

3.5



2.448
6.623
7.947
5.399
0.044



-1.25
0.00
1.25
2.50



2.492
5.766
5.104
4.649



Sample: DELILAH 3



Moment Me

* Mean 0.52 PHI

Std.Dev. 1.26 PHI

Skewness -0.12

Kurtosis 2.19




Grain Size (PHI)



Figure C4. Grain size distribution for sediment sample 3, 1 5 October 1 990

Appendix C Sediments



C5



DELILAH Sediment Sample - 4

Location: Longshore = 1011.05 m, Cross-shore = 96.46 m. Depth = 2.18 m

Silt Clay



SIZE CLASSIFICATION:
(By Weight Percent)
Wentworth
Unified



Gravel - Sand -

Coarse Medium Fine
1.34 52.82 26.02 19.79
0.00 1.34 58.92 39.72



0.02
0.02



0.00
0.00



STANDARD STATISTICS: Method of Moments Folk Graphic Measures Grain Size





Median


Diameter











90 phi


0.


534 mm




Mean


Diameter




0.98 ph




1


00 phi


0.


505 mm


Standard Deviation




0.99 ph




1


02 phi










Skewness




-0.01







08










Kurtosis




2.13







79






Diam.


Weight


Diam.


Weight


Diam.


Weight


Diam.


Weight


Diam.


Weight


(phi)


( % )


(phi)


( % )


(phi)


( % )


(Dhi)


( % )


(phi)


( % )


-1.75


0.000


-1.50


0.005


-1.25


0.393


-1.00


0.942


-0.75


1.811


-0.50


3.262


-0.25


4.915


0.00


5.622


0.25


9.313


0.50


8.399


0.75


8.607


1.00


10.893


1.25


6.094


1.50


5.031


1.75


7.045


2.00


7.854


2.25


7.429


2.50


7.184


2.75


3.520


3.00


1.326


3.25


0.254


3.5


0.060


3.75


0.018


4.00


0.000


4.25


0.023



Sampla: DELILAH 4



Momvnt Maasures
Maan 0.96 PHI

Std. D«v. O.es PHI
SkownQss -0.01
Kurtosis 2.13




Grain SIZD (PHI)



C6



Figure C5. Grain size distribution for sediment sample 4, 1 5 October 1990

Appendix C Surveying



DELILAH Sediment Sample - 5

Location: Longshore = 1010.83 m. Cross-shore = 100.48 m, Depth = 1 .66 m

Silt Clay



SIZE CLASSIFICATION:
(By Weight Percent)
Wentworth
Unified



Gravel Sand

Coarse Medium Fine
5.99 50.71 30.11 13.18 0.00 0.00
0.00 5.99 57.93 36.08 0.00 0.00



STANDARD STATISTICS: Method of Moments Folk Graphic Measures Grain Size





Median


Diameter











85 phi





556 mm




Mean


Diameter




0.80 ph







83 phi





575 mm


Standard Deviation




1.06 ph




1


07 phi










Skewness




-0.36




-0


07










Kurtosis




2.77







93






Diam.


Weight


Diam.


Weight


Diam.


Weight


Diam.


Weight


Diam.


Weight


(phi)


( % )


(phi)
-2.00


( % )
1.021


(phi)
-1.75


( % )
0.945


(phi)
-1.50


( % )
0.684


(phi)
-1.25


( % )


-2.25


0.000


1.057


-1.00


2.282


-0.75


1.338


-0.50


3.702


-0.25


5.198


0.00


5.459


0.25


9.069


0.50


7.506


0.75


7.455


1.00


10.983


1.25


7.220


1.50


6.556


1.75


8.532


2.00


7.802


2.25


5.678


2.50


4.141


2.75


2.165


3.00


0.975


3.25


0.209


3.5



1 2 4 6 7 8 9 10

Online LibraryWilliam A. (William Allen) Birkemeier1990 DELILAH Nearshore Experiment : summary report → online text (page 4 of 10)